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The role of facial identification in the 215t century

« Face recognition most prevalent method of person
identification in the pre-digital world

 In the digital world, facial recognition still common
method of person identification, for example in:
— User identification
— Migration control
— Criminal prosecution

Daniela Klette
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The role of facial identification in the 218t century

Eight Months Pregnant and Arrested

« Artificial face recognition systems as driver of efficiency After False Facial Recognition Match
an d | n Creased I’6| |ab| Ity | nm any ap pl |Cat| on scen arlos Porcha Woodruff thought the police who showed up at her door
. . to arrest her for carjacking were joking. She is the first woman
¢ B Ut pOte ntl a.l Iy d Ire CO nseq uences Of errors known to be wrongfully accused as a result of facial recognition
technology.

% Share full article A m :‘ 1473

What went wrong with the electronic
passport gates at UK airports?

Passengers waited The A Register

checks on Tuesday

malfunctioned Gy percriminals are stealing 10S users' face
h scans to break into mobile banking accounts

\ Deepfake-enabled attacks against Android and iPhone users are netting criminals serious
|/
cash

A false facial recognition match sent this
innocent Black man to jail
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Motivation and Outline

Understand characteristics Discern when/why human
of human face recognition face recognition fails

4 R

* Improve understanding of
f > human face recognition
* Improve performance of
artificial face recognition

N % » Infer guidelines for

human-Al collaboration

Find (dis)similarities
between human and Discern when/why artificial

artificial face recognition face recognition fails
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Characteristics of human face processing




Human face recognition in everyday life

* The average person knows about 5000
faces (Jenkins et al., 2018)

— Range between 1000 and 10000
« Robust recognition of familiar faces despite
differences in:
— Perspective
— lllumination
— Physical distance
— Emotional expression
— Age
« But: Face recognition is actually a hard task!

df%g Benedikt Wirth 20.08.2024 6




Human face recognition in everyday life

* The average person knows about 5000
faces (Jenkins et al., 2018)

— Range between 1000 and 10000
« Robust recognition of familiar faces despite
differences in:
— Perspective
— lllumination
— Physical distance
— Emotional expression
— Age
« But: Face recognition is actually a hard task!

 Why are we nevertheless able to robustly
recognize (familiar) faces?
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Holistic face processing in humans

* In contrast to other object
categories, faces are
assumed to be processed
holistically

— Not only individual features

— But also spatial relationships
between aspects of the face
(second order relations,
configural processing)

« Empirical evidence for
holistic processing:

— Inversion effect
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Holistic face processing in humans

* In contrast to other object
categories, faces are
assumed to be processed
holistically

— Not individual features

— But spatial relationships
between aspects of the face
(second order relations,
configural processing)

« Empirical evidence for
holistic processing:

— Inversion effect

— Thatcher illusion

Thompson (1980)
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Holistic face processing in humans

* In contrast to other object
categories, faces are
assumed to be processed
holistically

— Not individual features

— But spatial relationships
between aspects of the face
(second order relations,
configural processing)

« Empirical evidence for
holistic processing:

— Inversion effect

— Thatcher illusion

— Composite-face effect

Murphy et al. (2017)

Tanaka & Simonyi (2016)
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When face recognition fails...




* Innocence project

— NGO with the aim to
overturn wrongful
convictions

— 300 succesful
suspensions of
wrongful convictions

— Mostly due to new
DNA evidence
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... The consequences can be dire

Major Causes of Wrongtul Convictions
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Recognition of familiar versus unfamiliar faces

+ ldentification of people from CCTV (Burton et al. 1999)

— Presentation of 10 CCTV images showing 10 different
lecturers entering a university building

— Participants:

20 students familiar with the lecturers (same
department)

» 20 students unfamiliar with the lecturers (different
department)

» 20 police officers (average 13.5 years of service)
— Task:

» Presentation of 20 high quality images (10
previously seen, 10 not seen)

 Indicate on a scale from 1 (definitely not seen) to 7
(definitely seen) whether you have seen the
depicted person in the videos
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Recognition of familiar versus unfamiliar faces

 Results:

ratin 7 1
— Near-perfect performance of students familiar i
with the shown lecturers 6 - B seen
— Poor performance of students unfamiliar with L] unseen
the shown lecturers 5 1
— Poor performance of police officers unfamiliar
with the shown lecturers .
-
« Conclusion: Familiarity critical factor of face
recognition performance 2 4
.
0 - T T
familiar unfam students unfam police

df%g Benedikt Wirth 20.08.2024 14 G#N




Unfamiliar face matching in novices and professional experts

« Simulation of everyday passport controls
(Wirth & Carbon, 2017)

— Presentation of 192 pairs of faces consisting of
» Passport photograph
» Large-sized photograph
— Task: Indicate whether both photographs depict
the same person

(4) selbe Person <--->  unterschiedliche Personen (6)

— Participants:

» 48 novices (students without specific
passport-matching experience)

* 96 officers of the German Federal Police:
— 48 officers with short job experience

(M = 5.7 years) BUNDESPOLIZEI
— 48 officers with long job experience

(M = 22.7 years)
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Unfamiliar face matching in novices and professional experts

Unmanipulated Paraphernalia Distinctive features Hairstyle

Unmanipulated Paraphernalia Distinctive features Hairstyle

T
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Unfamiliar face matching in novices and professional

experts
* Results
— Police officers* matching performance 4.0 | | | |
significantly higher than novice 35} o i
performance s g
30r +*
N . . ¢ ‘0 ¢ " . L 4
— But within group of police officers, S 25 l . ¢ -
decreasing performance with increasing = s LA AR
professional experience =201 | ¢ * e
5150 | 8 ot
w |I. ' ¢
10 B [ ] . N I S N
b O  Short experience
05r \® ¢ Long experience | |
0 . . . . . . . . . .

Novices O 50 100 150 200 250 300 350 400 450
Period of active service in months
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Unfamiliar face matching in novices and professional experts

100 Match trials Mismatch trials
Match trials: @%ﬁ - _'g
« High accuracy close to 90 | & ® *’\@
ceiling e
* Hardly affected by feature <= 80t
manipulations &
8 70 |
. . < —— Novices —&&— Novices
Mismatch trials: 60 F | ---8--- Short experience { F} | ---B--- Short experience
« Lower accuracyrates | | o= Long experience | | | | e &= Long experience
* Significant impairments 50 :
by aI_I featgre y fg@p (\‘2;\‘@ . & = \{5@6 0&@ \\\}@"-’ <
manipulations R & & G & R & o
& > N Q 2 &
& N oD N N oD
¢ Q° e X v o
Q¥ O
Feature manipulation Feature manipulation
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The own-race bias

 |nvestigation of face recognition in White
and Asian participants (Michel et al., 2006)

— Sequential presentation of 20 White and 20
Asian faces
— Task
 Memorize the presented faces

» Subsequently presentation of 40 faces (20
previously presented, 20 new) 14

* Indicate whether a given face was seen 0.5

before or not
— Resuts: Caucasian participants Asian participants

2.5

B Caucasian faces
O Asian faces

1.5

» Better performance for White faces in
White participants

» Better performance for Asian faces in
Asian participants
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The own-race bias

Two groups of explanatory theories for the own-race bias (ORB)

Cognitive theories Social-psychological theories

 ORB consequence of reduced experience ORB consequence of social ingroup-

with other-race faces outgroup processes
» Cognitive system not trained to be » Categorization of other-race faces on
sensitive to diagnostic features of other- superordinate level as outgroup
race faces
* Reduced use of holistic processing - Less motivation to remember outgroup
faces

« Correlation between strength of ORB and Correlation between strength of ORB and
frequency of contact with people from racial prejudice
different ethnicities (during childhood)
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The own-race bias

« Study by Michel et al. (2006)

— Presentation of a target face and
subsequently a comparison face

— Task: Is the top half of the target face

2
and the comparison face the same?
— Four different types of comparison Target face Target face
3

faces:
4

1. Same/Aligned

2. Same/Misaligned
3. Different Aligned
4. Different Misaligned

a4 |
N
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The own-race bias

« Results:
— White participants:

« Significant composite-face effect for White
faces

* No composite-face effect for Asian faces
— Asian participants:

« Significant composite-face effect for Asian
faces

« Significant, but reduced composite-face
effect for White faces

« Conclusion: Holistic processing reduced or
even completely elimited for other-race faces
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Interim summary

« Substantial differences between processing of faces versus processing of other objects
— Holistic processing (i.e., processing of the ,gestalt” of a face)
— Processing of spatial distances between individual face parts

« Advantage of holistic processing: Robust recognition of familiar faces across different
Illumination conditions, perspectives, emotional expressions, etc.

« Processing of unfamiliar (and especially of other-race) faces:
— Less use of holistic processing
— Less reliable and robust
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Deep Convolutional Neural Networks (DCNNS)




Face processing in Al: Deep Convolutional Neural Networks

* Network architecture
developed for image , | |
classification: A4

« Characterized by T B | == 4
— Convolution operations - 1y - o

ol A A % 512 ni2 512

— High number of layers 7 VD e

convd

— Purely Feed-forward e com w

LlE
(s

il
Gdgd - conv2

operations comet

« |dea: Do not process individual pixels but small image patches to decrease the number
of neurons required
« Popular architectures:
— AlexNet (Krizhevsky et al., 2012)
— VGG-16 (Simonyan & Zisserman, 2015)
— ResNet-50 (He et al., 2016)
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The principles of convolution and receptive field size

* Input image size: 7x7 pixels
« Conv layer 1:

— Kernel size: 3x3

— Stride: 2

— Output size: 3x3

— Receptive field size: 3x3
« Conv Layer 2:

— Kernel size: 3x3

— Output size: 1x1

— Receptive field size: 7x7

Input Layer 1
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Despite generally similar architecture,

- differences in operations:
@)

-J
i
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Object Recognition in Humans and DCNNSs




Differences between humans and DCNNSs in object recognition

« Comparison of recognition accuracy for
16 ImageNet classes (Geirhos et al., 2018)

1.0

4@ AlexNet

-~ GooglLeNet

* Restricted viewing conditions for A VGe-16
- participants (avg.)

humans:
— Image presented for 200 ms
— Masked with pink noise for 200 ms

» Four different image manipulations

0.6 0.8

Classification accuracy

— Greyscale <
— Reduced Contrast ©
— Added noise

— Eidolon S

= Human object
recognition more
robust than DCNN
recognition

W
[-w, w] is the range of additive uniform noise

50%-Accuracy
examples
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Differences between humans and DCNNSs in object recognition

« Comparison of recognition accuracy for

16 ImageNet classes (Geirhos et al., 2018) © @ AlexNet
» Restricted viewing conditions for A voRe
humans: © - participants (avg.)
©
— Image presented for 200 ms >
— Masked with pink noise for 200 ms g ©
» Four different image manipulations f C’
— Greyscale ‘%
S < |
— Reduced Contrast g ©
— Added noise o
— Eidolon S
= Human object o
S

recognition more
robust than DCNN
recognition

Log, of reach

50%-Accuracy
examples
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Texture versus global shape in DCNN object recognition

 DCNNSs have problems classifying objects * In cue-conflict images, humans show a bias
with unusual texture (Baker et al., 2018) towards shape, DCNNs towards texture
— Silhouettes (Baker et al., 2018; Geirhos et al., 2019)

— Outlines
— Glass figurines

(f‘
W
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Texture versus global shape in DCNN object recognition

Creation of texturized images (Brendel & Bethge,
2019)

Surprisingly high accuracy of VGG-16 on
scrambled ImageNet pictures: 79.4% top-5
accuracy (vs. 90.1% on normal pictures)

But: Texturized images created based on hidden
layer activations of VGG-19 =» Circular argument

original

Benedikt Wirth 20.08.2024
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Local features versus global shape in DCNN object recognition

» Creation of a bag-of-local features model (Brendel
& Bethge, 2019) B C

Validation performance Pearson correlation between

- Modification of ResNet-50 to reduce size of of Baghets ng\ffa?jna?go\/ifjlféC'aSS
receptive field of the topmost convolutional layer SRR
to g x g pixels with g € {9, 17, 33}

« Surprisingly high classification accuracy on
ImageNet

« High correlation of class activations between
VGG-16 and BagNets

1.0

O
o

BagNets

Alexnet

o]
o

Top-5 Vallidation Performance [%]
Pearson Correlation

~
(]

= Object recognition in DCNNs mainly — = o — -

contingent upon local features and texture, not Receptive field [px] Receptive field [px]
on global shape
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Face processing in humans and DCNNSs




Gender and race cues

White male prototype White female prototype
 Investigation of reliance on race and gender

cues for face identification in humans and
DCNNSs (Hancock et al., 2020)

« Creation of four prototypical faces by
averaging multiple individual faces:
— White male
— White female
— Black male
— Black female

Gender difference
vector

Race
transform

Gender
transform
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Gender and race cues

Race
transform

Gender
transform

transform direction

male -> female 93.5 100 98.8 429 99.4
T we ws oo 0 o
male; White -> Blak 764 94 558 sy R I 05 318
- female, T o e o . 53

Q
df%ﬂ Benedikt Wirth 20.08.2024 36




Diagnostic Features

« Measurement of perceptual sensitivity for different A. Tagging procedure
facial features (Abudarham et al. 2016) Rate lip thickness for each face

0.9 C. Perceptual sensitivity scores for each feature
F)
S 08
§ 0.7
b 0.6
o 0.5
(5}
E 0.4
g 03 B. Matching procedure
£ 02
0.1 Which lips are thicker?
0
'\‘{‘\0 Q\’? ¢ 'é . ; o“,Q/o e’ ~(\<J 00 S
R S X ™ PRIPOS
«
o o o o o
. Leftlipsare  Leftlipsare  Samelip Right lips  Right lips are
ngh PS features Low PS features much thicker thicker thickness  are thicker ~ much thicker
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Diagnostic Features

Original

High-PS
feature
changes:

Eye Color Eye Shape Eyebrow
Thickness

Lip Thickness: -0.83 =» +1.98  Hair Color: --0.68 > +1.41
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Diagnostic Features

Humans

« Presentation of four types of face pairs to human »

participants and DCNNs (Abudarham et al., 2019) 09
« Task: Indicate whether two faces belong to the | .
same person on a scale ranging from 1 g 0
(definitely not the same person) to 6 (definitely .
the different people) S 03
Same Different gj .
- ;;f_‘ 3 DNN

Normalized Dissimilarity

Normalized Dissimilarity
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The inversion effect in DCNNSs

« Comparsion of face matching performance for
upright and inverted faces (Dobs et al., 2023)

— Human participants
— Face-Identification CNN

\1/
EENNESNSSSSSNEEENEEEEEEN
l ]

Face identities
— Objects-and-Face Categorization CNN

Pl Slolude
N1/ \ 1/
———

l Il J
Object categories Face category

— Object-Categorization CNN
PP -
\1/

l J
Object categories
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Which face matches the target?

Target

ﬁ

Match A Match B

N

100

|dentity matching
accuracy (%)

~l (o] ©

o o o

(%))
o

9]
o
|

Upright
Inverted




The inversion effect in DCNNSs

« But how specific is this inversion effect to
(upright) faces?

« Training of two new CNNSs:
— Inverted-Face-ldentification CNN
— Car-Model-Identification CNN

100 Upright *
B Upright § 80! -I P gr]t J T
8)(6‘ 80 Inverted 5 nverte
- : O 60|
8 > 60 ©
O I o
oL o -
O e
(] 9 O |
L S 20 3 20 I .
> M M
° N N g 0 N N N N
o o SO S ©
< ??}06 Ca o) 0{\‘\
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Comparing holistic processing between humans and
DCNNSs




Experiment 1: Rationale and stimuli/input

Both local-feature and
holistic information intact =»
Baseline

* If DCNNSs rely mainly
on local-feature
information to process
faces:

— Performance should
be less affected when
holistic information is
degraded

— Performance should
be more affected
when local-feature
information is
degraded

« Manipulation of test-set
images of the
VGGFace2 database

Local-feature information
severely degraded, holistic
information intact

Local-feature information
intact, holistic information
somewhat degraded

Local-feature information
intact, holistic information
substantially degraded

Coarsely scrambled Finely scrambled
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Experiment 1: Participants and architecture

Human participants

e N=32
e Recruited via Prolific
— Age 19-35

— Living in Germany, Austria or Switzerland
— Fluentin German

— Normal or corrected-to-normal vision

— High reputation on Prolific

dfki Benedikt Wirth
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ResNet-50

« DCNN with state-of-the art ImageNet classification
accuracy at time of publication (He et al., 2016)

« High accuracy in face recognition (Cao et al., 2018)

» Trained on the training set of VGGFace2 (Cao et al.,
2018)

» Feature extraction at penultimate layer (before class
activations are calculated)

ResNet50 Model Architecture

o
Input | £ = Bk S S S - o Output
P S| >18 514 e|8| |e|S]| |e|S]| |o|3 g £ P
© Z = O | m |2 m| 2 m| S8 m (S als
o Ol ¢ 70" > |0 > (@[> (@[> (@[T o =
o8 X | € €| € o € |na > ©
e = o= o (= o|= o | = < =
@ m o o o o L
N
. )
Stage 1 Stage 2 Stage3 Stage4 Stageb
20.08.2024 44
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Experiment 1: Procedure

Unfamiliar face-matching procedure

Judge identity of two face photographs using a
six-point Likert scale
384 experimental trials

— Oiriginal vs. Mooney vs. coarsely scrambled vs.
finely scrambled (25% each)

— Same identity vs. different identities (50% each)
— Male faces vs. female faces (50% each)

Benedikt Wirth
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Experiment 1: Results

« Statistical procedure

— Quantify the difference in matching accuracy
for each participant (and ResNet-50) between:
 Original vs. coarsely scrambled
 Original vs finely scrambled
 Original vs. Mooney

— Test whether the pattern of performance
decrements for human participants significantly
deviates from the pattern of ResNet-50

« Result: All three manipulations more
detrimental to ResNet-50 than to human
participants

dfki Benedikt Wirth
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Human participants

A 4 00/

0.751

True positive rate
2

0.251

0.001

Unmanipulated

Coarsely scrambled

Finely scrambled
Mooney

1.00

20.08.2024

0.75 050 0.25
True negative rate

0.00

ResNet-50

B 100

0.75

True positive rate
2

0.25

0.00

NS

Unmanipulated
Coarsely scrambled
Finely scrambled
Mooney

1.00

0.75 050 025 0.00
True negative rate
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Experiment 2: Rationale and architecture

BagNet-33 BagNet-57 BagNet-73
v v Y

« Restriction of holistic processing:

(k=1,5=1,r=1

. global al/g pool SIUEREENE -
—— | [globalavgpool |  (Tglobalave pool
RESNet'SO Bag Net'73 Bag Net'57 fC (Class output) [Tfc(class :ulpul) | [fc(class :utput) | [ fc(class output)

] (k=
. . . . Ckeaseires | (ke
— Not by manipulation of input images [::;::*;?:""T (&
— But by manipulation of architecture . | [ == | -
« Two new architectures based on BagNets ’ [ =
(Brendel & Bethge, 2018) § [* &
— BagNet-73 (receptive field of approximately . 3 [ﬁ;ij;{ 3 |
1/9 of input image) : i
— BagNet-57 (receptive field of approximately { | [
1/16 of input image) [t:iiz:j [
- Feature Extraction : EEENE
':e‘/'; Sen i
"—‘l ’ \ k=15s=1
- o
Ko el
[k=1,s=1,:=57 ] k=1,5s=1,r=73 ]
)
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Experiment 2: Rationale and architecture

« Restriction of holistic processing: « Training on the training split of VGGFace2
— Not by manipulation of input images using the same procedure as Cao et al.
— But by manipulation of architecture (2018):
« Two new architectures based on BagNets — ~3.1 Mio images
(Brendel & Bethge, 2018) — 8631 individuals

— BagNet-73 (receptive field of approximately « Training parameters:

1/9 of input image) — Three stages with learning rates of 0.1, 0.01,
— BagNet-57 (receptive field of approximately 0.001

1/16 of input image) — 22 epochs per stage
— Batch size: 256

— Optimizer: Stochastic gradient descent

ResNet-50 BagNet-73 BagNet-57
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Experiment 2. Participants and procedure

Participants Procedure

e N=236 * How to simulate highly overlapping receptive fields?
* Recruited via Prolific
— Age 18-35
— Living in Germany, Austria or Switzerland
— Fluent in German
— Normal or corrected-to-normal vision
— High reputation on Prolific

ResNet-50 BagNet-73 BagNet-57

« Movable visual aperture controlled by participants
m

Unrestricted Large Aperture Small Aperture
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Statistical procedure

Experiment 2: Results

— Quantify the difference in matching accuracy
for each participant (and DCNNSs) between:

« Whole image vs. receptive field / aperture
of approximately 1/9 of the input image

size

« Whole image vs. receptive field / aperture
of approximately 1/16 of the input image

size

— Test whether the pattern of performance
decrements for human participants significantly 0.25-
deviates from the pattern of DCNNs

— Result: Substantial decrements for human 0.00 /

p ]
-
o
(=]

0.751

True positive rate
5

Unrestricted viewing
— Large aperture
Small aperture

participants, no effect on DCNNs 100

Benedikt Wirth
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075 050 025 0.00
True negative rate

B 100

0.75

True positive rate
2

0.25

0.00

ResNet—50
— BagNet-73

BagNet-57

1.00 075 050 025 0.00
True negative rate
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Interpretation and integration of both experiments

Experiment 1 Experiment 2
Performance decrements due to No performance decrements for
perturbation of holistic (and local DCNNSs due to restricted receptive

feature-based) information similar fields, but substantial decrements for
(even larger) for DCNNs than for human participants due to viewing
human participants apertures

Integration
Optimisation conditions during training
critical factor

The nature of the computations that underlie perception depends more upon the computational problems that have to be
solved than on the particular hardware in which their solutions are implemented. (Marr, 1982/2010, p. 29):
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Limitations of comparing cognitive processes between humans and DCNNs

Limitations Potential solutions
 Different optimisation conditions between « High variance in training sets to mimic
human participants and DCNNs human developmental conditions

(illumination, size, distance, perspective)
» susceptibility of DCNNs to low-level image  * Integration of operations typical for the

perturbations human primary visual cortex into DCNNs
(Dapello et al. 2020; Pogoncheff et al., 2023)
« Feedforward DCNNs vs. feedback brains * Integration of recurrent processes in

DCNNSs (Mnih et al., 2014, Kubilius et al., 2019)

But: DCNNs as unique opportunity of modelling and manipulating the optimisation
conditions of the human visual system in order to answer ,why“ questions regarding the
human cognitive system (Kanwisher et al., 2023)

Benedikt Wirth 20.08.2024
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Why artificial face recognition fails...
How It can be improved...
And what what it tells about human face recognition
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The own-race bias in DCNNs

« Face matching task with White and Asian
faces (Dobs et al., 2023) 100 ¢

*
_ ' ici 1 White
W.hlte par_tlc_:lpants m Asian
— Asian participants
— DCNN trained to classify White faces
— DCNN trained to classify Asian faces

— DCNN trained to classify objects with White
faces as one class

(00} w
o o

|ldentity matching
accuracy (%)
S

60 f
— DCNN trained to classify objects with Asian
faces as one class QL &
- : - @ N TIPS\ RO\ SRR SRR R\
— DCNN trained to classify objects '&ﬁ\ﬁiﬁa o @o\\‘@ﬁ t@ot@f‘oﬁoﬁ C’\i\eﬂ'd\\\
— Untrained DCNN W ﬁﬁ‘{;\o 3\0"“0@ &P O @
€ ¢¥ o e
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Implicit racial bias in common face datasets

 Racial Faces in the Wild Dataset (RF\W: Wang Model | RFW g
Caucasian Indian Asian African
etal., 2019) Microsoft [3] 87.60 8283 79.67 75.83
— 6000 face pairs for a difficult matching task commercial Face++ [4] 93.90 88.55 9247  87.50
_ API Baidu [3] 89.13 86.53 90.27 77.97
— Comprises faces from four races Amazon [1] 00.45 8720 84.87 86.27
e 2505 White mean 90.27 86.28 86.82  81.89
Center-loss [65] | 87.18 81.92 79.32 78.00
» 25% Asian SOTA Sphereface [39] | 90.80  87.02 82.95  82.28
. algorithm Arcface'[21] 02.15 88.00 8398 84.03
* 25% Indian VGGface2 [15] | 89.90  86.13 8493 8338
e 2504 African mean 90.01 85.77 82.80 82.15

. . I Arcface here is trained on CASIA-Webface using ResNet-34.
« Evaluation of models trained on common

face dataStS on RFW Train/ Databas Racial distribution (%)
. Most likelv cause of impaired performance for Test atabase Caucasian Asian Indian African

. y p . p . . CASTIA-WebFace [67] 84.5 2.6 1.6 11.3
non-White faces: Uneven distribution in train VGGFace2 [15] 74.2 60 40 158
MS-Celeb-1M [30] 76.3 6.6 2.6 14.5
common datasets LFW [33] 69.9 13.2 2.9 14.0
test [JB-A [37] 66.0 0.8 7.2 17.0
RFW 25.0 25.0 25.0 25.0
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Mitigating racial bias in DCNNs

Creation of racially balanced face
datasets (Wang & Deng, 2020)

Training of models on BUPT-
Globalface using reinforcement
learning with adaptive margins

Evaluation on RFW dataset

Benedikt Wirth

(a) Existing training datasets

(b) BUPT-Globalface

mm Caucasian
wm [ndian

mm Asian

= African

(¢) BUPT-Balancedface

Methods Caucasian Indian Asian African
Softmax 05.62 91.97 90.85 §89.98
M-RBN(soft) 93.50 94.50 90.06 93.43
RL-RBN(soft) 94.53 05.03 94.20 94.05
Cosface 96.63 94.68 93.50 92.17
M-RBN(cos) 96.15 05.73 9343 94.76
RL-RBN(cos) 96.03 05.15 94.58 94.27
Arcface [13] 97.37 95.68 94.55 93.87
M-RBN(arc) 97.03 05.58 9440 95.18
RL-RBN(arc) 97.08 95.63 95.57 94.87
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Discussion & OQOutlook

« By comparing face processing between human and
DCNNSs, we can
— Advance our understanding of human face processing
— Improve artificial face processing

— Potentially better coordinate the collaboration between
humans and artifical face recognition

Hole et al. (2002)

 Further avenues for future resarch could include
— Testing the limits of holistic face processing

« How small can receptive field sizes get before
substantial performance decrements occur?

« Can DCNNs trained on scrambled faces achieve
similar matching performance as DCNNs trained
on whole faces?

— New innovative ways to manipulate holistic
processing in input images

df%g Benedikt Wirth 20.08.2024



Thanks for your attention!
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Group tasks

It is difficult to describe faces verbally. Why do you think this is the case? How could we use
Al to improve the verbal description of faces?

We saw that it is easy to tell whether two cars are the same or not, but difficult to tell
whether two faces are the same or not. Try to describe in your own words: What are the
crucial differences between cars and faces (or other objects)?

We are able to recognize familiar faces sometimes after we have not seen them for
decades, but it can be difficult to tell whether to faces that are presented simultaneously
show the same person or not. Why do you think is that the case?

TOP SECRET Task: Meet me in one of the separate rooms to get your assignment
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Outlook

« To what degree is holistic processing
necessary for face recognition ?

« Training of original BagNets (9, 17, 33) on
VGGFace2

« Training of ResNet-50 on scrambled faces Hole et al. (2002)

* Performance decrements of DCNNS in
Experiment 1 due to perturbation of high-level
iInformation (holistic, local features) or low-level
Image properties?

» Comparison of face matching performance for

scrambled faces between ResNet-50 and
BagNets

* Manipulation holistischer/lokaler Merkmals-
information ohne inharente low-level Artefakte

df%g Benedikt Wirth 20.08.2024



DCNNs as a model for the human visual system

4 Q 8 8 8 oy Critics:
S ve e S\ DCNNSs not a good model of human cognition due
84 b OO0 O Q“ S to large number of model parameters =» replacing
s 8 8 8 8: - one black box with another black box
S o ey 0
- 8 SO AN 720 Proponents:
[ S . DCNNSs can provide valuable insights under
experimental manipulation of model architecture,
abstraction > learning algorithms, and characteristics of the input
/

Specific manipulations of the input
should lead to similar behaviour for
humans and DCNNSs.
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Differences between humans and DCNNSs in object recognition

« Comparison of recognition accuracy for
16 ImageNet classes (Geirhos et al., 2018)

1.0

4@ AlexNet

-~ GooglLeNet

* Restricted viewing conditions for A VGe-16
- participants (avg.)

humans:
— Image presented for 200 ms
— Masked with pink noise for 200 ms

» Four different image manipulations

0.6 0.8

Classification accuracy

— Greyscale <
— Reduced Contrast ©
— Added noise

— Eidolon S

= Human object
recognition more
robust than DCNN
recognition

W
[-w, w] is the range of additive uniform noise

50%-Accuracy
examples
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Differences between humans and DCNNSs in object recognition

« Comparison of recognition accuracy for

16 ImageNet classes (Geirhos et al., 2018) © @ AlexNet
» Restricted viewing conditions for A voRe
humans: © - participants (avg.)
©
— Image presented for 200 ms >
— Masked with pink noise for 200 ms g ©
» Four different image manipulations f C’
— Greyscale ‘%
S < |
— Reduced Contrast g ©
— Added noise o
— Eidolon S
= Human object o
S

recognition more
robust than DCNN
recognition

Log, of reach

50%-Accuracy
examples
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Local features versus global shape in DCNN object recognition

» Creation of a bag-of-local features model
,BagNets” (Brendel & Bethge, 2019)

* Modification of ResNet-50 to reduce size of
receptive field of the topmost convolutional layer
to g x g pixels with q € {9, 17, 33}

« Surprisingly high classification accuracy on
ImageNet

« High correlation between calss activations of
VGG-16 and BagNets

« Surprisingly high accuracy of VGG-16 on
scrambled ImageNet pictures: 79.4% top-5
accuracy (vs. 90.1% on normal pictures)

texturised images

=>» Object recognition in DCNNs mainly
dependent on local features (image patches);
global shape (gestalt) largely ignored
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Rotation Group 1

Rotation Group 2

Rotation Group 3

Rotation Group 4

Benedikt Wirth

Stimulus rotation groups

20.08.2024

Goal: A Given participant
sees each celebrity only
in one condition
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Control of human participants motivation and ability

e 40 GFMT trials

« Glasgow Face Matching Test (Burton et
al., 2010)

« Psychometric test to measure individual Same identity
unfamiliar-face-matching ability

« Participants with less than 60%
accuracy excluded

Different identity

df%g Benedikt Wirth 20.08.2024




Creation of Mooney Faces

« Creation of 35 Mooney candidates
for each image:

Application of Gaussian Filter with
o € {10, 15, 20, 25, 30}

Binarization with threshold t € {0.4,
0.45, 0.475, 0.5,0.525 ,0.55,0.6}

« Selection of optimal candidate:
No texture information left

Still some information about eye
region left

dfki Benedikt Wirth
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