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The original approaches to the problems of the dynamics of the vibrating transport 

and technological machine with electromagnetic excitation of vibrations are considered. 

A generalized mathematical model of the spatial motion of the system "vibratory exciter -

working member - operational load in the form of bulk material" was constructed and 

comprehensive modeling was carried out.

The results of modeling on the dynamic stability of the electromagnetic vibrating 

machines are presented and cases concerning the use of numerical methods are shown, 

taking into account non-linearity in the electromagnetic vibratory exciters.

The mechanism for generating subharmonic vibrations, as well as the method of 

taking account for the hysteresis phenomenon of the electromagnet in the mathematical 

model are described. A new scheme of the exciter with frequency division of operating 

vibrations has been developed and investigated. Some new designs of the 

electromagnetic vibratory feeders are presented.

The book may be used by engineers and scientists working in the area of vibration 

engineering and technology, as well as using a systems approach in the field of dynamics 

of complex mechanical systems.
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Preface

The vibrating machines and processes are widely used in many areas of production, 

due to their advantage over similar transport and technological equipment. The most 

common ones are the vibrating machines and devices designed for movingvarious 

materials (feeding, transporting, dissemination, screening, etc.) to perform a range of 

operations in the metallurgical, mining, chemical, engineering, construction and other 

industries.

Despite the simplicity of their design and servicing, the fairly complicated high-

intensity dynamic processes of various nature and forms (the interaction of the masses of 

the vibrating machine, operating member and technological load, particles and layers of 

materials, the dynamic processes in the vibratory drives, etc.) are developing in the 

vibrating machines during their operation, and this predetermines the main directions in 

vibration technology.

In the extensive literature on the study of the vibration processes of movement, the 

emphasis is mostly placed on the individual pointsin the process (the displacement of

masses, oscillations ofthe vibrating machine elements, dynamic processes in the vibratory

drives, etc.), and only in some cases - taking into account their interlinkages, brought to 

theoretical assessments.

The first partis mainly devoted to the consideration of a single dynamic model of the

generalized vibrating transport and technological machine, which unites its components, 

such as an energy source, elastic system, operating member, and technological load. It 

takes into account the principal geometric parameters (common for these machines) and 

the real characteristics of each part.

Based on a systems approach, a mathematical model of the movements of units of 

machine describes the interrelated dynamic processes in space and can bring it to specific

cases arising out of a practical requirement.

The book covers numerous computational experiments and their results along with a 

comparison with experimental data.

As an integral component of modern research, based on the analysis of the existing 

methods, a methodology has been developed to optimize the spatial dynamic model of 

thevibrating machine of general type and specific real machines. New designs of the 

progressive vibrating machines for transport and technological purposes are presented.

The second part examines the issues of the design of the elastic elements of the

vibrating machines, taking into account the opening of the elastic-frictional fixturing

(shaft-bushingjoint), which, depending on the magnitude of torsional moment, causes 
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both a nonlinear change in the rigidity of the elastic element and the generation of a 

damping coefficient. As an elastic element, a spatial torsional elastic system is taken, the 

design of which includes the identification of power factors caused by the joint action of 

the torsional and bending moments. It should be noted that the design of the torsional 

spatial system includes the bending analysis that would allow for calculating the rigidity

of a double-sided clamped spring system, and thereby determining the structural damping 

coefficient for bending deformation. It should be especially noted that in this work some 

issues of mathematical modeling are considered when constructing a nonlinear 

amplitude-frequency diagram and obtaining stable operating modes of the 

electromagnetic vibratory exciters, the electrical line of which includes a semiconductor 

diode.

The electromagnetic exciters of vibrations are widely used in the vibrating

technological machines of resonant action, on which the requirements ofcontrolling the 

amplitude, frequency, damping of vibrations, and so on are imposed. 

The third part dwells on the solutions to these issues by creating the low-

frequency nonlinear electromagnetic exciters of resonant vibrations.The mechanism for 

generating subharmonic vibrations, as well as the method of taking account for the 

hysteresis phenomenon of the electromagnet in the mathematical model are described. A 

new scheme of the exciter with frequency division of operating vibrations has been 

developed and investigated. The issues of controlling the amplitude, natural frequency 

and damping of the system at low-frequency vibrations are described.

Studies of the nonlinear electromagnetic exciter of vibrations have been conducted 

through the theoretical calculations and mathematical modeling of the main electric and 

mechanical characteristics, as well as by conducting the field tests of a real physical 

model.

The results obtained in this work allowto reduce significantly the weight and 

dimensions of the vibratory exciter, reduce the level of radiated noise and the transfer of 

dynamic loads to the supporting structures.

The results obtained in this work can significantly reduce the weight and dimensions of 

the vibration exciter, lower the level of radiated noise and the transfer of dynamic loads 

to the support structures. 
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PART I

THE MOVEMENT OF FRIABLE MATERIALS ALONG THE 

SPATIALLY VIBRATING PLANE AND FEATURES OF ITS 

SIMULATION

Introduction

The essence of vibration engineering for processing applications is based on 

interaction of the vibrating operating member with a procesable object. Initial research in 

the field of vibration engineering and technology involves the study of the patterns of 

vibratory displacement of the rigid single bodies in the form of material particle, single-

piece parts of various shapes, as well as some of the simplest models of bulk material [1, 

7, 10, 11, 15, 17, 20]. 

Vibration technological processes are indispensable component parts of production 

across numerous industry sectors, such as mechanical engineering, chemical and 

metallurgical industries, construction industry, mining, agriculture, etc.; they may be 

associated with the oriented displacement of single-piece parts, sorting and transportation 

of bulk materials, with forming the articles of the construction industry, using vibration 

in conjunction with hydraulic and pneumatic processes, and so on.

The nature of the process of the vibrational movement of materials is formed by 

different factors, such as parameters of the operating member, vibration exciter, 

properties of the process material, the cross impact of the medium being treated and the 

vibration machine; among these, operational load, which can be represented in the form 

of a material point, rigid body or bulk material, appears to occupy an important place.

The first of these is more open to analytical investigation; the second one - a

generalized type of material (a rigid body) - is separated into several typical shapes: 

cylindrical, spherical, polyhedral, flat and so on.

A more complex type material is bulk material thatcombines the diversity of bulk 

cargo. The vibrational movement of bulk cargo is associated with complex physical 

processes occurring between the lower layers of the cargo and the load-carrying surface; 

the patterns of displacement are also significantly influenced by the medium in which 

cargo moves. So, for example, when mass cargo moves in the tossing mode, there takes 

placerarefaction or compression of air, depending on whether the load falls or comes 

away. The effect of air-gap clearances formed between the load and the working 
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member’s surface is the stronger, the finer the particles of load, and the pressure drops in 

some cases exceed the gravity of the material by a multiple [10, 18].

The wide application of the vibration processes is due to the simplicity of their 

servicing and the relatively easy binding of the vibrating machines, especially with the 

electromagnetic exciters of operating vibrations, to technological processes with various 

physical parameters.

Owing toa variety of tasks associated with the use of vibration engineering, the 

problems of studying the relationship of individual structural parts and units of machine 

both in a static and dynamic states, taking the dynamic coupling of the operating 

members and the medium being treated into account simultaneously, assumea primary 

importance. Thus, the study of work processes should be carried out in an integrated 

manner, given the linkbetween the main component parts ofmachine that form the end

result of technological process.

The first part of a monograph considers issues of the emergence of three-dimensional

(non-working) vibrations of the operating member of the vibrating machine.

One of the critical units in the vibrating machines is an elastic system that transmits 

vibrations from avibratory exciter to the operating members; the features of the elastic 

elements create the preconditions for the emergence of three-dimensional vibrations (in 

addition to working ones) of the working member of a vibration machine, which in turn 

affects the performance of a given (calculated) work process by machine.

Unavoidable (even within tolerances) errors in the manufacture and installation of 

individual units and machine,in general, play an important role in the emergence of three-

dimensional (parasitic) oscillations in the vibrating machines; they are themselves a

causeof deviation of the pointing direction of transmission of the exciting force and the 

mutual position of the masses (1- vibratory exciter, 2 - the working member) and the 

elastic system (Fig. 1.1): a) inaccuracy in the processing of the supporting surface of 

springs, b) inaccuracy in the processing of the surface of the working member connecting 

it with an elastic element, c) inaccuracy in the location of the axis of an elastic element, 

d) transverse deformation of spring, e) torsional deformation of spring.
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Fig.I.1. Deviations (inaccuracies) of the mutual position of the elastic 

system and the design elements of the vibrating machine  

In the dynamic model of the vibrating machine, deviations caused by above 

mentioned inaccuracies can be divided into two types: deviations of the coordinate axes 

of masses and deviations of the direction of the exciting forces.

To illustrate this point, Figure 1.2 shows the system of two bodies �1 (stationary-

vibratory exciter) and �2 (movable-working member), interconnected by spring � and 

moving through space ���z; deviations of the working member caused by various 

possible inaccuracies are shown as follows: I - the initial (design) position of the working 

member, II - the position of the working member, taking into account initial inaccuracies,

among which ex, ey, ezare the eccentricities of the movement of the center of gravity from 

point O1 to point O1
’
; 000 ,, ��� rotation of the axes of a coordinate system causedby

installation inaccuracies of the vibrating machine and their transition from the positions

1111 zyxO to '

1

'

1

'

1

'

1 zyxO (Fig. 1a, b); III -
"

1

"

1

"

1

"

1 zyxO - the spatial dynamic (working) position of the

working member; the coordinate system vvvv zyxO is connected with avibratory exciter, 1 -

the main (working) elastic system of thevibrating machine, 2 - the suspensions of the 

vibrating machine, the mass �2, for the reasons stated, might be found in the positions 
'

1

'

1

'

1

'

1 zyxO and 
"

1

"

1

"

1

"

1 zyxO (dotted lines). Owing to displacement of the point of force application 

from the initial position, xQ will decomposeinto components '

1xQ , '

2xQ , which creates 

conditions for the appearance ofthe moment of forces about the center of the mass and, 

therefore, bending and rotational vibrations.
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Fig.I.2. The possible location masses caused by errors in the connection

of the elastic system with masses: I - ideal, II - design, III – dynamic
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Chapter 1. 

The movement of friable materials along 

the spatially vibrating plane

1.1. A spatial dynamic model of the loaded 

vibrating transport machine

1.1.1. A spatial dynamic model of the friable 

technological load (TL)

To include a technological load of friable type in the overall three-dimensional

system and to make it generic, we formally represent it as a rigid body with an elastic 

system, which constitutes a tentative model of elastic characteristics of bulk material.

At a fixed moment in time, the elastic system of load decomposes into six 

components that describe the elastic damping characteristics of material in space.

Peculiarity of the mentioned elastic model of material consists in its 

unilateralconstraint with the working member (WM) of the vibrating machine. The 

conditional elastic elements describe the nature of interaction of the layers of material 

with each other and with a base of the working member. Unlike other models, it can 

provide a degree of freedom in any direction and, accordingly, its inclusion in a spatial 

model of the overall dynamic system; at the same time, it can be brought to a simpler 

form: flat, linear, etc.

The representation of operational load (TL) in the form of a rigid body (when 

composing the kinetic energy expression) is due to the need forobtaining more 

generalized equations of motion of TL - not only linear(in this case, a material point 

could be taken as a model of load), but also rotational movements.

As will be shown later, during modeling, the elastic and damping coefficients will 

vary depending on theoperating mode of thevibratory exciter –the movement with or 

without lifting the WM off the surface.

In Figure I.3, deformations of the layers of bulk material are described by the elastic 

elements with elastic coefficients 
333333

,,,,, ��� kkkkkk zyx ; during deformation of the layers, 

the energy absorption is described by damping coefficients 
333333

,,,,, ��� cccccc zyx .
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Fig.I.3. A generalized spatial dynamic model of bulk OL connected with 

the working member’s surface ( 1111 zyxO ) ofthevibratingmachine

1.1.2. A spatial dynamic model of the working member

of the vibrating machine with technological load.

The movement of operational load of the working member of the vibrating machine 

can be considered on the basis of complex motion of the rigid bodies [5, 8, 9].

The spatial motion of operational load (of a system ��������) is considered to be a 

relative to the working member - and complex - relative to the stationary system (Fig. 

I.4).

Figure I.4 illustrates changes in the Euler rotation angles ������������and �����������of 

each mass and the corresponding positions of the coordinate axes ��
� ��
� ��
� ��
� and��

� ��
� ��
� ��
� .

1.1.3. A generalized dynamic model of the system "vibratory

exciter – WM of the vibrating machine - TL" 

 

As mentioned in the introduction, there are many arguments justifying the 

advisability of representing and considering the vibrating technological machine in space.

Let us represent a loaded vibrating machine in space (Fig.I.5).

On the basis of classical methods of mechanics, we will consider the relative, 

translatory and absolute motion of a rigid body and material particle in space; to this end, 

we will connect fixedly the three-axis coordinate system O1x1y1z1, O2x2y2z2, O3x3y3z3,
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respectively, to each component of the system "the vibrating machine’s working member 

- vibratory exciter - operational load".

Fig.I.4.A spatial dynamic model of WM (
1111 zyxO )

of the vibrating machinewith TL (��������)

Let us consider the absolute spatial motion relative to the stationary (inertial) system 

Oxyz (Fig. I.5a); V – is the speed of material movement in the longitudinal direction of 

the working member; 2 - suspension; 3- the conditional elastic elements associated with 

bulk material; 1 - the main elastic system, through which vibrations from the vibration 

exciter are transmitted to the working member; Q(t) –the periodic exciting force.

Based on the above, thevibrating technological machine can be treated as a three-

mass vibratory system, consisting of the following elements: active mass (working 

member) - M1,reaction mass (vibratory exciter) - M2,operational load (process or 

transport mass) - M3 (Fig. I .6).
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Fig. I.5. The movement of the loaded vibrating machine in space 

Fig.I.6. The tree-mass oscillatory system – an analogue of the vibrating technological 

machine: a) classical form, b) in the form of the vibrating machine  
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The main difference between the system under considerationand the classical n-mass 

system is associated with the following aspects: 1) the specificity of technological 

massperformingthe relative motion in relation to the operating member, while the masses 

M1 and M2 are coming into the independent movement from the external sources of 

energy; 2) the certain initial positions of masses M1, M2, M3 relative to each other (such a 

condition turns the generally accepted sequence of mathematical model buildingintothe 

asymmetric one); 3) the singularities of interaction betweenM1 and M2, as masses 

attached to each other by conditional elastic joints; 4) taking into account deviation of the 

elastic joints from the unreformed state at large (for example, resonant) displacements.

1.2.      Kinetic and potential energies of the system "vibratory exciter 

– elastic elements - WM of the vibrating machine - TL"

1.2.1. Determination of coordinates of points of the location

of masses and the attachments of the elastic connections in 

a three-mass model of the vibrator
 

Consider the absolute motion of a system shown in Figure I.6, both in aggregate and 

for specific masses, both in relation to one other and to the inertial system.

Figure I.6 illustrates the points A, B, C, D of fixing the elastic elements of the 

vibration exciter; K, L, M, N – the suspension fixing points; Ai, Bi, Ci – the free points of 

corresponding masses; the masses are considered in three positions: I – an ideal position -

motionless (according to design drawing), II –a post-installation position - motionless, III 

– a dynamic position - movable. The location of the coordinate systems associated with 

masses in the mentioned three positions is determined usingangular coefficients 

(directional cosines) in accordance with Table 1, where i = 1, 2, 3;  m = I, II, III.

TableI.1

xi yi zi

xi
m

(	i
m
)11 (	i

m
)12 (	i

m
)13

yi
m

(	i
m
)21 (	i

m
)22 (	i

m
)23

zi
m

(	i
m
)31 (	i

m
)32 (	i

m
)33

We represent the directional cosines (Table I.1) in the form of the Euler-Krylov 

angles �i, �i, �I [1]; in this case, due to the smallness of the rotational movements, the 

products of no higher than the second order will be taken into consideration. Taking into
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account only the dynamic displacement, the directional cosines will be in the form shown 

in Table I.2.

If we take into account deviations of the coordinate systems caused by imperfection 

of the machine and some geometricspecifications, such as angles of vibration and slope 	

and 
 of the working member, we obtain an extended form of Table I.2 (Table I.3); with 

this aim in view, we use the expression

'. ijijij 		� � , (I.1)  

Table I.2
IIx1

IIy1

IIz1

Ix1
1� ��

�/2

� ��
�/2

111 ��� 
� ��

Iy1
�� 1� ��

�/2�
��
�/2

���

Iz1
��� � ���� ����� + �� �

where	ij -resulting from initial imperfection, and 	’
ij - caused by dynamic displacement –

directional cosines. The right side disclosure (I.1) is made by multiplyingthe rows of the 

first factor by the columns of the second one, for example,  

'

3113

'

2112

'

111111 						� 

�

                                             
'

3213

'

2212

'

121112 						� 

�                                 (I.2)

…. . . . . . . . . . . . . . . . .

In this case, the location of the coordinate system O
I
1 x

I
1 y

I
1 z

I
1 in relation to the Oxyz

system is described in accordance with Table I.3

Table I.3
''

1x ''

1y ''

1z

1x

	�����

���	����

����

sin)

(cos)

////(

11111

1111111

2

1

2

1

2

1

2

1 22221

��



�
��
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O

OOOOO

OO

	�����

���	��

������

sin)
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(

11111

11111

111111


�
�

�






��

OO

OOO

OOO

	���

�����

	����

sin)///

2/1(

cos)(

222
2

1

2

1

2

1

2

11111

1111

OO

OO

OOO

���

����




�

1y 11111( OO ���� ��

11

2

1

2
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In Table I.3, the index “i” marks the angles that are obtained by rotating the axes as a 

result of dynamic displacement, and the index “oi” marks the angles obtained by initial 

deviations from an ideal (design) position, due to errors in the manufacture of 

components and machine installation. 

The locations of other coordinate systems are determined in the same way. 

To determine the position of masses of the multi-mass interlocking oscillatory system in 

space, it is necessary to determine the coordinates of the centers of gravity, the fixing 

points of the elastic elements and suspensions to masses, as well as to bring them to a

single, particular coordinate system; this operation is carried out using the above 

directional cosines. For example, let us turn the coordinates of the fixing point A of the 

main elastic element into the coordinate system Oxyz, after dynamic displacement of 

masses

                                  1311211111
			 AAAOA

zyxxx 


�

                             2312212111
			 AAAOA

zyxyy 


�                                 (I.3)

                                   3313213111
			 AAAOA zyxzz 


� ,

were
111

,, OOO zyx - are the coordinates of a point�1in a coordinate system Oxyz; AAA zyx 111 ,,

- the coordinates of a point �in a coordinate system O1x1y1z1; 3311 ,........,		 - directional 

cosines in accordance with Table I.3.

1.2.2. The vector expression for the kinetic energy of the 

three-mass spatial vibration system –theanalogue

of a loaded vibration machine

When determining the kinetic energy of the three-mass kinetic energy, the initial 

deviations (due to malfunction) of the coordinate systems will be taken into account. The 

movements of masses M1 and M2 will be treated as independent, while the mass 

movement is considered to be a relative to the mass M1.
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To obtain the general vector kinetic energy expressions, we determine the absolute 

velocities of the free points Ai, Bi, Ci of each mass. These points are connected to the 

origins of the coordinate systems, both their own and the fixed coordinate system; in 

addition, M3 is connected to the center of gravity of the mass (to the origin of the 

coordinate system); this connection can be unilateral, depending on the type of cargo and 

the type of motion mode. The vector expressions for the velocities of points Ai, Bi, Ci

willtake the form as follows:

                                   iOOA rVV
i 111

�
� � ,

                                   iOOC rVV
i 222

�
� � ,                                                               (I.4)

                          iOOiOOB rVRVV
i 33 3311

�

�
� �� , )( 33 irRR 
� ,

where iii rRR 333 
� ;
321

,, OOO VVV - the linear velocities of points O1, O2, and O3; iii rrr 321 ,, - the 

radius-vectors of particles Ai, Bi, and Ci;  
321

,, OOO ��� - the velocities of the rotational 

movement of masses.

Accordingly, the kinetic energy expressions will take the form as follows: 
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By applying (I.4) to (I.5), we obtain

)]()([
2

1
10101

2

101

2

01

1

11

1

ii

n

i

i rVrVMT �
�
� �
�

�� ;

)]()([
2

1
20202

2

202

2

02

1

22

2

ii

n

i

i rVrVMT �
�
� �
�

�� ;

)(2))((2)(2))((2

)(2)(2)()()([
2

1

303033033013010330301

301010101

2

30303

2

301

2

01

2

01

1

33

3

iiiii

iii

n

i

i

rVrrrVrR

rVRVrVrRVMT

�
��
�
��



�
�
�

�
�
� �
�

������

�����

where M1i, M2i, M3i – the masses of particles Ai, Bi, and Ci.
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1.2.3.   An expansion of kinetic energy along the coordinate axes

If we decompose the components of the above obtained kinetic energy expressions 

with respect to the axes of the coordinate system "

1

"

1

"

1

"

1 zyxO (for which we will use tables I.1 

and I.3 and the expressions (I.1)), we obtain:
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where ,,,,,,;,,,,, 222111222111 ������zyxzyx ��, ��, ��, ��, ��, �� – the 

coordinates of the motion of centers O1, O2 andO3 of the massesM1, M2, and M3;
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	��, 	��, 	��- the moments of inertiaof the mass M1 relative to the axes  ��������;

	��, 	��, 	�� - the moments of inertia of mass M2relative to the axes  �������� ;

	��, 	��, 	�� - the moments of inertia of the mass M3 relative to the axes ��
"��

"��
"��

" .

The total kinetic energywill be equal to:

������������������T =   T1 + T2 + T3.                                                             (I.9)

1.2.4. Potential energy and deformation forces of the main 

elasticsystem of the vibrating machines

The deformation forces of the elastic system 1 can be determined depending on the 

expected magnitude of deformation and the mode (for example, resonant mode), as well 

as on the operating conditions. 

With the large displacements of the oscillating masses, the classical expression of 

potential energy, which is the basis for the Lagrange’s equation and yielding the

differential equations, loses its validity. In this case, it is necessary to directly compose 

the expressions of the elastic forces and their moments and put them into the differential 

equations. In this case, the operation of differentiating kinetic energy by the generalized 

velocity remains in force and is performed according to the Lagrange’s equation.

This approach was chosen becausewith the large displacements, the direction of the 

deformed elastic element cannot follow its initial direction; therefore, it is necessary to 

define the projections of the elastic forces and their moments on the coordinate axes 

independently, that is, according to the projections of the difference between the lengths 

of the initial and deformed elastic element. To include operational load (M3) in the 

overall spatial system (Fig. 1.6), and to give it a generalized scope, we represent it 

formally as a rigid body, where the elastic system 3 represents a tentative model of the 

elastic characteristics of technological bulk material.

At a fixed point in time, the elastic system 3 decomposes into 6 components, which 

describe the elastically damped nature of the transported material in space. The 

peculiarity of the elastic system 3 (Fig. I.3, I.5, I.6) consists in unilateral constraint with 

the working memberwhile moving; with the aid of the conditional elastic elements, there 

is described the nature of the inner layers of bulk material, interactions between the inner 

layers and between them and the surfaces of the working body.

As against existing models [1, 14, 16, 17], they are able to account all degrees of 

freedom and could therefore be included in acommon spatial system (Fig.); at the same 
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time, depending on the specific problem, this system can be brought to a simpler form: 

flat, linear, and punctual.

The representation of bulk operational load in the form of a rigid body is due to the 

need to obtain the equations of motion of cargo of a more general form - not only linear 

(in this case, operational load could be taken as a material point), but also rotational 

motion.

Let us represent the elastic system connecting two parts (active and reactive) of a 

resonant electromagnetic vibration machine, by means of the elastic elements 

decomposed in space (Fig. I.7).

The representation of one elastic element by two spatial systems is due to the fact 

that the elastic element connecting two moving parts of the resonant machine during their 

oscillations is stationary at a point whose position is a function of the values of the 

oscillating masses (Fig. I.7).

Fig. I.7. Decomposition in space of the main elastic system at the fixing points 

with the active and reactive masses of the resonant electro-vibrating machine  

With a small displacement of the masses of the vibrating machine, the direction of 

movement is assumed to be identical with the axis of the elastic element, and the elastic 

force is proportional to its deformation; in this case, the elastic forces Fx, Fy, and Fz, are 

described in terms of linear expressions

                       FxA=kxAxA ; FyA=kyAyA ; FzA=kzAzA.                                             (I.10)
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and the potential energy of the elastic system attached to point � is determined by the

following expression

                            �� =
�

�
� (�����	

� +�
	
� �����	

� + �����	
� )                            (I.11)

The same expression is also obtained for point �.

1.2.5.  The elastic and resistance forces at large (resonant) 

displacements of the vibrating masses

With the large displacements of the masses (resonance modes, etc.), the potential 

energy expression (I.11) cannot be valid, and in order to obtain the generalized elastic 

forces and moments, it is necessary to compose directly their expressions and put them 

into the differential equations; the kinetic energy differentiation operation remains valid. 

This approach is determined by the fact that at large displacements, the direction of the 

deformed elastic elements cannot be considered identical with its initial (undeformed)

direction, and it is necessary to determine the elastic forces and their moments on each 

axis of the coordinate system independently [ 5 ].

Let us consider this approach briefly.

The deformation force of the elastic element has the form

                         �� = �����    ,                                                   (I.12)

               

where
1l� is an elongation (truncation)

                                  ��� = �� � ��� ;                                                    (I.13)

1k - spring flexibility coefficient; 01l - the initial (undeformed) spring length;

The projections of the force
1F on the coordinate axisOxyzwill have the form as 

follows

  ��� = �� �
�( �, ��); ��� = �� �
�( �, ��); ��� = �� �
�( �, ��),                        (I.14)

   where
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zz
lz BA �� . (I.15)
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If we put (I.15)into (I.14),and take account for (I.13), we shall obtain

))(1(
1

01
11 BAxx xx

l

l
kF ��� ; ))(1(

1

01
11 BAyy yy

l

l
kF ��� ; ))(1(

1

01
11 BAzz zz

l

l
kF ��� . (I.16)

Let us introduce the following notations

                                );(1 '

11

1

01 qQ
l

l
�� )( '

11

1

01 qf
l

l
� ,                                                      (I.17)

thenthe equation system (I.16) can be rewritten as follows

       ))(( '

1111 BAxx xxqfkF �� ; ))(( '

1111 BAyy yyqfkF �� ; ))(( '

1111 BAzz zzqfkF �� .           (I.18)

The length of the elastic element after the dynamic displacements of the masses M1

and M2has the form:

                                            222

1 )()()( BABABA zzyyxxl �
�
�� ,                  (I.19)

where xA,…..,xBare coordinates of the fixing points A and B (Fig. I. 2). The 

expression(I.19)can be represented as

                                                  '

1

2

1 qml 
� ,                                           (I.20)

where
'

1q is a function of linear and rotational motion of the masses M1 and M2; m – the 

square root of the sum of the constant valueson the right-hand side of the expression 

(I.19).

Let us expand the function

2/1

1101

'

11 )1(/)( �
�� qnllqf

in a Maclaurin seriesand confine ourselves to the values of a second degree of the 

smallness
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where
1q =

2'

1 / mq ; �n ml /01 .
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Let us rewrite the function )( '

11 qQ as follows

                                        )( '

11 qQ = 2

1111
8

3

2

1
1)(1 nqnqnqf �
��� .                         (I.22)

Because of the smallness of
1q in the expansionof (1.21), we’ll keep the second-order 

terms 
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According to the expression (I.22), we’ll have
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qQ ���                                                       (I.24)

1.2.6. Determination of potential energy and deformation

forces of the elastic system of operational load

To include the transported material into the general spatial system "vibratory exciter 

–operating member - operational load - elastic system" and give it a generalized form, we 

represent it formally as a rigid body (Fig. I.8), where the elastic system 3 is a conditional 

model of the elastic characteristics of the transported bulk material. 

Fig. I.8.A spatial model of the system “vibratory 

exciter-elastic system-operating member-TL” 
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At a fixed point in time, the elastic system 3 decomposes into threeparts, which 

describe the elastic characteristics of material in three directions ( ),, 333 zyx kkk .The 

originality of the elastic system 3 lays in the fragility of its link to TL and WM in both 

static and dynamic states. 

By means of the elastic elements of ageneric spatial model (Fig. I.9), there are

described: interlayer elastic-damping characteristics of bulk material; interaction between 

the layers of material and the surface of the working member. Unlike other models, it 

takes into account all degrees of freedom and can be included in a spatial model; at the 

same time, depending on the specific problem, it can be reduced to a simpler model 

(linear, plane, or punctual).

Representation of a TL in the form of a rigid body is due to the need to obtain a 

generalized equation of motion of TL - not only for linear (in this case, we could use a 

punctual model) but for rotational motion as well

Fig. I.9. A generalized spatial model of TL 

The modeling of deformations of the layers during motion is carried out by means of 

the elastic elements with elastic constants kx, ky, kz, k�, k�, and k�. The modeling of 

energy dissipation is provided by dampers with coefficients cx, cy, cz, c�, c�, k�; direct 

contact of TL with the WMis changed by elastic-frictional bonds.

While determining the potential forces of a conditional elastic system 3, depending 

on the magnitude of displacement (bouncing), it is possible to use (as for the elastic 

system 1) two approaches, such as composing the expressions for potential energy at 

small displacements, and the direct determination of elastic forces at large displacements.
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To determine the length of the conditional elastic system 3, it is necessary to

determine the coordinates of its fixing points to the masses M1 andM2; in this case, points 

C and D are not fixed due to a change in the trajectory of load; but, if we assume that the 

machine is continuously filled with bulk material, its height and center of gravity can be 

considered constant. Now, if we connect the center of gravity of material with the center 

of gravity of the WM by means of the conditional elastic elements, the determination of 

their coordinates is easily implementable. Hereinafter, the determination of the elastic 

forces is carried out similarly to the elastic element 1 (Fig. I.5, I.8).

1.2.7. The force field of the vibrating system-the

damping forces and their moments

Based on the expression (I.18), the projections of the elastic forces acting at point �

of the body M1 are determined

�1XF )( 11 qQ )( 111 BAX xxk � = )( 11 qQ 1Xk ( 131211 ��� AAA zyx 

 - 131211 ��� BBB zyx �� )

                                                                                                                (I.25)

where ij� - are the directyional cosine angles between the axes of the coordinate systems 

Oxyz and ."

1

"

1

"

1

"

1 zyxO

A similar determination can be made for 
1YF and

1ZF

         �1YF )( 11 qQ )( 111 BAY yyk � ; �1ZF )( 11 qQ )( 111 BAZ zzk � ;     (I.26)

The moments of forceF1applied to pointA of the body M1 relative to the ases of a 

coordinate system 
"

1

"

1

"

1

"

1 zyxO are determined similarly to gliding vectors [ 6 ]

                                                          �� AZX
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AY zF 11
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                                                  �� AXY
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1
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;                                           (I.27)

                                                          �� AYZ
xFM 11

"
1

AX yF 11
.

The same method is used to determine the moments of forces of other elastic 

materials. 
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To determine the forces and moments of resistance, the hypothesis [5] is used, 

according to which these forces are applied to the fixing points of the elastic elements to 

the masses (for the elastic system 1 - to points A and B), and they are proportional to the 

displacement velocities of

these points. In this case, the expressions of forces and moments in form shall be 

similar to the forces and moments of elasticity (I.26), (I.27), but the displacements will be 

replaced by the velocities and the elastic constants kq - by the resistance coefficients cq.

The projections of the resistance forces acting on point A will have the form as 

follows:
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The moments of the resistance forces will be determining similarly by analogy with 

(I.27).

Due to the fact that the method for determining the forces and moments of elasticity 

and damping for the remaining elastic elements (2, 3, 4 - Fig. I.1) are similar to the 

elastic element 1, they are not given here.

1.3. A mathematical model of the spatial system "vibratory 

exciter - the rigid WM of the vibrating machine - TL" 

1.3.1. The generalized differential equations

The main difference between the system under consideration and the classical n-

mass system is associated with the following aspects: 1) the specificity of technological 

mass performing the relative motion in relation to the operating member, while the 

masses M1 and M2   are coming into the independent movement from the external sources 

of energy; 2) the certain initial positions of masses M1, M2, M3 relative to each other 

(such a condition turns the generally accepted sequence of mathematical model building 

into the asymmetric one); 3) the singularities of interaction between M1 and M2, as 

masses attached to each other by conditional elastic joints; 4) taking into account 
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deviation of the elastic joints from the undeformed state at large (for example, resonant) 

displacements. 

Using the method of Lagrange and taking into account the difference of the 

considered vibration system from the classical n-mass system (paragraph 2.3), on the 

basis of the above expressions for the kinetic energy and potential forces,it is possible

obtain the corresponding system of differential equations.

The Lagrangianequation for the system under consideration will have the form as 

follows 

'

.
)( qq QQ

q

T

q

T

dt

d

�

�

�
�

�

� ,

where T – the system’s kinetic energy; q – generalized coordinate, taking on the values

,,,,,,;,,,,, 222111222111 ������zyxzyx 333333 ,,,,, ���zyx ; qQ - potential 

forces associated with an elastic system of the machine; '

qQ - forces that are not associated 

with deformations of the elastic systems or inertia of masses of the system under 

consideration (external forces, gravitational forces, resistance forces of a type of external 

friction, etc.).   

In view of the above assumption about the smallness of the displacement (vibration), 

the equations will take account for products no higher than the second degree of 

smallness.

For the mass M1, the equations will have the form
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where ��� 721 ,...,, AAA - the functions of the sum moment of inertia relative tot he 

respective axes, for example 

;; 33112

3

3

1

11 yzyx
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x
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x JJJJAJJA �
��
� ��

;3133113 zzyzyx JJJJJJA 

�
��� da a. S.

The terms on the right-hand side of the equation (I.29) contain inertial forces that are 

generated through the interaction of masses M1 and M3; at the same time, in the first three 

equations, the non-linear terms (products) arose due to the relative motion of the mass M3

and taking into account the error ( 030101 ,, ��� , etc.) in the manufacture and installation of 

a real vibrating machine. In the event of M3 = 0, the indicated terms will not be there. The 

following three equations contain non-linear terms as a result of both the rotational 
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motion of the mass M3 and the proper motion of the mass M1, which follows from the rule 

for constructing a mathematical expression for the motion of a rigid body [6].

The potential field of the position of the mass M1 is associated with the state of the 

elastic systems I and II, which connect the masses M1, M2 andM3and therefore, in the 

formation of the elastic forces that create a potential field, the coordinates of these 

masses will also appear; this is displayed on the right-hand side of the expression (1.34) 

by means of symbol ),(( 1qfQQ qq � where i = 1, 2, 3.

The motion of the mass M2 is described by the following system of differential 

equations
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Unlike the expressions (I.29), in these equations there are no components of such an 

inertial type that would connect the motion of the mass M2 with the masses M1 or  M3, but 

there are potential forces that connect the motion of the masses M1and M2 by means of 

coordinates (Qq = f ( qi ), where i = 1, 2;  q = x1, x2, …, �2).

As noted above, the mass M3 performs relative motion in the coordinate system 

1111 zyxO and absolute motion inOxyz ; the differential equations of motion for the mass 

M3 will have the form
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Both here and in the above equations, the coefficients Biq and Ciq are functions of the 

sums of the mass moments of inertia.

The equations (I.29) and (I.31) are connected to each other by non-linear terms of a 

potential and inertial nature, and the form of connections for both systems is similar; the 

difference between them is that in (I.29) there is the sum of the masses M1 and M3, while 

in the equation (I.31), there is only one mass M3. It is in this form of dependence that the 

principle of vibrational movement of one body in relation to another one in the vibrating 

transport machines consists in.

It should be noted that the systems (I.29) and (I.31) describe the motion of the mass 

M3 relative to M1 with their constant interrelation (touching); the potential field in the 

form (on the right-hand side) is represented by the elastic-damping characteristics of M3

(depending on its state: solid, body of finite rigidity, bulk material, etc.) and depending 

on its position relative to M1,it may change until its complete disappearance. In addition, 

the dynamic relationship between M1 and M3 may be abrupt - in this case, the systems of 

equations (I.29) and (I.31) cannot be valid without appropriate adjustment.
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1.3.2. Additional power factors

In the case of the generalized expressions (I.29), (I.30), (I.31) of mass motion,

depending on the real mechanical system, there may arise both additional and 

accompanying power factors that would have been necessary to sustain and 

strengthenstability of movement.

Let us consider each of them.

�)  The frictional forces between the mated surfaces of the 

masses M1 and M3.

Consider this problembased on an example of the vibrating transport machines (Fig. 

I.5): M1 - the working member of the vibrating transport machines, M3 - transportable

(displaced) material. The working member is taken as an absolutely rigid body of various 

shapes (trough, bunker, pipe, etc.). Transportable materials may be the different types of 

materials.

At this time, the issue of friction force between the working member and the 

transportable material is elaborated insufficient detail for unit loads [7]; there have been 

examined details of the more frequent shapes (rectangular, spherical, cylindrical, etc.), as 

well as polygonal, with an overrolling nature, for which the friction force is realized only 

at points where the load is in contact with the working member.

The same does not go for issue of the massive materials with different granulometric 

compositions. Unlike the single (rigid) materials, there is no a fine line of contact 

betweenthe interacting bodies (the body M3 refers tothe generalized model of operational 

load - Fig. I.4); It is related to the fact that for the dispersed (bulk) materials,separation or 

the attachment to the vibrating surface does not happen instantly,but takes placetogether

with a transientelastic-damping process.

In order to describe the friction force between the bulk-type material and the surface 

of the working member, different approaches are used [1, 19, 23], the essence of which 

consists in the act that the response of load to the working member is proportional to the 

velocity of its displacement; in this case, there will be taken into account both the internal 

resistance of material and resistance of the medium (air, fluidity, etc.), where the motion 

is performed. 

),(
.

qqfN q � .

33 
 



When considering the spatial motion (rectilinear or rotational) of TL, instead of the 

normal response, the moments of these forces appear on one or another part of the 

surface of the WM (though):

�qfrF )( ;qfN �qfrM )( ,)( qqfr rF �

where f -the friction coefficient of load on the surface of the WM ( f is usually taken 

as variable in each cycle of motion, depending on a dynamic state - slip over the surface, 

stopping, etc.); qr - the distance from the friction surface to the center of gravity in the 

direction of coordinates. 

The frictional forces can be represented as follows: 

�3xF );( 3

.

xsignNf xx
�3yF );( 3

.

ysignNf yy
�3zF ),( 3

.

zsignNf zz

where fx, fy and fz are the friction coefficientsin the directions ofx, yand z (henceforth, 

there are taken fx, =  fy, =  fz = f);  Ny  - the normal response of load on the surface 2 (Fig.

10 – the lateral surfaces);  Nz – the normal response of load on the surface 1 (to the 

bottom);  signis a non-linear function, which is determined depending on the sign of the 

transportation velocity V: sign = 1, when V� 0 and sign = -1, when V� 0.

Fig. I.10. For determining the traction forces and moments of the

traction force of TL with the working member 

The moments of the friction forces relative to the coordinate axes have the form:

);()()( 3

.

333 �signrFrFM zyyzxfr ��
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                                            );()( 3

.

33 �signrFM zxyfr �

                                    ),()( 3

.

33 �signrFM yxzfr �                                    (I.32)

where zy rr , - the distances from the friction surfaces to the coordinate axes of the system 

3333 zyxO
.

The moments of thefriction forces relative to the coordinate axes of the system 

1111 zyxO have the form:

                   ;)( 331 zyyzxfr hFhFM �� ;)( 31 zxyfr hFM � ,)( 31 yxzfr hFM �              (I.33)

where zy hh , -the distances from the friction surfaces to the coordinate axes of the 

coordinate system 1111 zyxO .

In this case, the WM is delimited on two sides by planes 111 yxO and 111 xzO , while in 

the direction of 11 xO , it is open; in this case, the friction force on the surface of 111 zyO

does not exist and, accordingly, the terms with the factors rx, hxin the expressions (I.32), 

(I.33) are equal to zero. 

b) Gravity of TL.

Gravity of the material being transported, i.e. TL, plays a significant role in the 

vibratory transportation process formation, since the intensity of material movement 

depends heavily on the ratio of the gravity forces of OL and the WM inertia.

The force of gravity P of the mass M3 relative to the axes of the system  1111 zyxO

(WM) is expanded as follows:

           ��� = �����[���� + (��� + ��)�
��];                                         (I.34)

                     ��� = ����[(��� + ��)���� + (��� + ��)�
��];                  (I.35)

                     ��� = ����[�
�� � (��� + ��)����].                                         (I.36)

Due to the fact that the location of the center of gravity of the mass M3 in the 

coordinate system 
'

1

'

1

'

1

'

1 zyxO is determined by coordinates 333 ,, zyx , therefore the moments 

of the force vector P relative to the coordinate axes can be expressed as follows:
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(��)
� = ����� � �����;

                                        (��)�� = �
��� � �����;                                  (I.37)

(��)�� = ����� � �
���;

This notation is based on the assumption that the direction of the force P always 

corresponds to the direction of the axis Oz, while the coordinates of point O3 located on 

the axis ofPare known at any given time.

c) Exciting force.                         

The type of the exciting force will be identified depending on the type of the energy 

source (vibratory exciter). In any case, the direction of the force and the point of 

application are known for a particular mechanical system. With this in mind, let us 

assume that, in the best case, the direction of the exciting force corresponds to the 

direction of the axis of spring l1 (Fig. I.1) and passes through the center of gravity of the 

mass M1 (in most vibrating machines, the direction of the exciting force is determined by 

the location of the elastic system). At the same time, in the real machines, as a result of 

initial errors, the exciting force may not pass exactly through the center of gravity (this 

was also mentioned above) and will be deflected to eccentricities ex, ey and ez; in 

addition, under the dynamic effect on the mass, it will deflect in relation to the external 

exciting force on the coordinates 111 ,, zyx , due to the deformation of the elastic system.

Consider the position of the mass M1 before and after the application of the force Q,

while we assume that the direction of the force remains unchanged (Fig. I.2). The mass 

M1 is shown in three different positions - I, II, III; I corresponds to the initial position,

when the direction of Qcorresponds to the direction of the axis of undeformable spring 

and passes through the center of gravity O1; II corresponds to the real position of the 

mass M1 [9, 11]. Figure I.2 shows deviations that are characterized by the angles and 

eccentricities. The existence of eccentricities is the cause of the occurrence of the 

moments of forces, which, together with the transverse and bending deformations, 

generate vibrations of the mass M1 in space.

The projections of the force Q on the axes of the coordinate system will have the 

form as follows:

                               ]sin)(cos)([sin 1201101 211
	��	��	 ��

� QQx ;             

                               )](sin)(cos[ 10110120 1121
��	��	�� 
�
�
� QQy ;                (I.38)
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                           ]cos)(sin)([cos 1201101 211
	��	��	 ��

� QQz .

The moments of the force Q are determined by the formulas of the theory of vector 

algebra [6]; if we determine the coordinates of point N  of the passage of the force vector 

Q, then the moments of this vector relative to the axes of the coordinate system 1111 zyxO

will have the form as follows:

11111 yzzyx QeQeM �� ;

11111 zxxzy QeQeM �� ;

11111 xyyxz QeQeM �� .

If we take into account the aforementioned tolerance for the constant coincidence of 

the force Q with the axis 22 xO , its projections on the axes of the system will look like:

QX2=  Q;  QY2=  QZ2 = 0;

accordingly, the moments will look like:

MX2 = MY2 = MZ2 = 0.

On the basis of inertial, elastic and field damping forces acting on the considered 

three-mass system (Fig. I.5, I.6), as well as the external forces determined by the 

specificity of a particular machine, it is possible to obtain a system of the equations of a 

generalized form that will describe the dynamic state of the mentionedvibratory system.

For the mass M1
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For the mass M3
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where 1111111 ,,,,, ���zyxq � ; 2222222 ,,,,, ���zyxq � ; 3333333 ,,,,, ���zyxq � ;

;,..., "

11 qqF � ;,..., '

22 qqF � 33 ,..., qqF � is determined by (I.24), (I.26) - (I.28) and similar 

expressions; �*

31 , qq FQ the exciting force and forces of gravity and friction of TL acting on 

the mass M1; �'

2qQ the exciting force acting on the mass M2; �3qF the frictional forces 

acting on the mass M3.

Conclusions

1. For a loaded vibratory feeder, as a dynamic model of a three-mass asymmetric 

oscillatory system, a methodology was formulated for determining the coordinates of 

points of the centers of masses and connections (with elastic elements) for static and 

dynamic positions.

2. A total field of forces (potential, kinetic, internal and external) acting on the system is 

determined.

3. For each mass of the mentioned model, connected to each other by the elastic and 

inertial forces, a system of differential equations of spatial motion is obtained, the 

simplification of which is possible for any state of motion (plane, spatial, linear and 

non-linear)
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1.4. Mathematical modeling of the process of spatial vibrating 

transportation along the rigid working plane

1.4.1. Areas of research

The dynamic (Fig. I.5, I.6) and mathematical models (I.29) – (I.31) developed in a 

systematic manner allow us to study the influence of basic dynamic and design

parameters of a vibrating conveyor on the vibratory-technological process of different 

materials.

The studies can be carried out for the following parameters:

� design errors in the manufacture and installation of the vibration machines;

� the error-based occurrence of inactive three-dimensional vibrations;

� rigidity of the working (operating) member;

� characteristics of transported (processed) materials;

� design parameters of the vibrating machines;

� characteristics of a vibratory exciter;

� parameters of principalvibrationof the WM;

� other.

1.4.2. Possible design errors in the vibrating machines

In the mechanical parts of the vibrating machines, a significant role is played by the 

elastic components and related elements. Of very great significance are the specifics of 

the spring-operated elastic elements - they are vibrating not only in the direction of

periodic force, but they also performtransverse and torsional vibrations. Usually, 

additional (parasitic) oscillations are small and are largely left out of research, in view of 

the fact that they do not significantly affect the accuracy of the results; on the other hand, 

in the case of larger oscillations (resonance

machines, etc.) such inaccuracies can producethe significant difference between the 

design and real parameters.

The second reason for the occurrence of inactive parasitic oscillations is thes for the 

accuracy of processing of the joint surfacesof the elastic elements and masses, 

performing active vibrations. Errors of processing, even within tolerance, at large

amplitudes, cause parasitic oscillations, which affect the operating process [1, 2].
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The next factor disturbing the operating process, is error in transferring the exciting 

forceto the working member. In this case, error may occur bothfrom the excitingand as a 

resultofimproper location ofthe elastic elements.

Examples of inaccuracies are given above in Figure 1.1. 

1.4.3. Deviations of the directions of the exciting force and the

coordinate axes of masses of thevibrating machines

Consider inaccuracies in the location of the rigid WM of the vibrating machine in 

space (Fig. I.11). The coordinate system is in perfect condition and is rigidly attached to 

the WM. The direction of the axis Ox is the same as the direction of the exciting force; 

due to possible inaccuracies in the manufacture and installation of the vibrating machine, 

the real application point 
'

1O of force to the WM is shifted away from the ideal 1O to the 

eccentricities ex,  ey,and e z(Figure 1.11a); at the same time, the axes of the system 
' ' ' '

1 1 1 1O x y z

relative to the system 1 1 1 1O x y z are inclinedat the angles 0 0 0, ,� � � represented by the Euler 

angles (Figure I.11b).

Deviations of the exciting force Q(t)are caused by the indicated inaccuracies, and 

their

projections on the coordinate axes are determined using directional cosines:

              '
1

0 1 1( sin cos )
x

Q Q � 	 	� 
 ; '
1

0 1 0 1( cos sin )
y

Q Q � 	 � 	� 
 ;

                           '
1

0 1 1( cos sin )
z

Q Q � 	 	� 
 ,                                             (I.39)

Fig.I.11. Deviations of the location of the working 

member caused by errors in the design
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where 1	 	 
� 
 ; due to the smallness of angles 0 0 0, ,� � � during expansion of directional 

cosines in a series, only the linear terms are taken into account;

The projections of the moment .M Q e� on the coordinate axes 1 1 1 1O x y z will have the 

form as follows:

            

                                                            

'
1

0 1 1 0 1 1[ ( sin cos ) ( cos sin )];x zy
M Q e a a e a a� �� 
 � 
             (I.40)

               '
1

0 1 0 1 0 1 1[ ( cos sin ) ( sin cos )].x zz
M Q e a a e a a� � �� 
 � 


1.4.4. Simplified equations of spatial motion of WM and TL

The differential equations of translational and rotational motion of the WM, taking 

into account manufacturing errors, will have the form

                       
.. .

'
11 1 1 1 0 1 1 1[( )sin cos ];x x xM x c x k x k Q a a� � �
 
 � � 
 


                      
.. .

'

1 1 1 1 0 1 1 0 11 [( ) cos ( )sin ];y y yM y c y k y k Q a a� � � � �
 
 
 � 
 
 


     
.. .

'
11 1 1 1 0 1 1 1[( ) cos sin ];z z zM z c z k z k Q a a� � �
 
 
 � 
 
    (I.41)

                                              '
1

.. .
'

1 1 1 1 ;
x

J c k k x M� � � �� � �
 
 � �

'
1

.. .
'

1 1 1 ;
y

J c k k y M� � � �� � �
 
 � �

                                            '
1

.. .
'

1 1 1 1 z
J c k k z M� � � �� � �
 
 � � ,

where , , , , ,x y zk k k k k k� � � and , , , , ,x y zc c c c c c� � � are the elastic and damping coefficientsof 

the elastic system;
' ' ' ' ' ', , , , ,x y zk k k k k k� � � - coefficients that link transverse-rotatory and 

longitudinal-torsional vibrations;  Q = Qo f (t), Qo – the exciting force coefficient, f(t)–law 

of variation of the exciting force; in the right-hand side of the equations (I.41), unlike the 

expressions (I.39) and (I.40), there are also taken into account the dynamic angular 

coordinates �, �, �.

The movement of TL in three forward directions is described by the equations as 

follows:

'
1

0 1 1 0 1 0 1[ ( cos sin ) ( cos sin )];y zx
M Q e a a e a a� � �� 
 � �
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wherethe coefficientsA, B, B1, C”, D, E, E1, and Ccharacterize the position of TL relative 

to the surface of the WM. The equations (1.4) are distinguished from general equations of 

motion of OL by the term arising as a result of errors 0 0 0, ,� � � .

The equations(I.41) and (I.42)are solved together with the equation of force of a 

vibratory exciter  

Q = Qo f (t) = Qo	
2
,

where	 – magnetic flow, the change of which is determined by means of the expression

[6]. 

                   	
WS

rx
t

W

U

td

	d
2

0

10 )(
sin

�

�
�

�
�� ,                      (I.43)

whereUo- the peak system voltage value, W – turn number, � - circular frequency, � –

initial gap, r – ohmic resistance, μ - air magnetic conductivity h/m, S – core area,

When solving the system (I.41), (I.42) and the equations (I.43), errors varied within

the following limit - for angular errors: 000 ,, ��� = ( 0 - 0,15) rad.; for transmission errors 

of the exciting force: zyx eee ,, = (0 – 0,015) m. For better clarity of the influence of errors 

on the process, the vibrationshave been strengthened in one or another specific direction 

by resonating these vibrations with an exciting force (together with a change in errors).
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1.4.5. Mathematical modeling of vibration transportation on

changes in the initial design in accuracies of the vibrator

The influence of inaccuracies in the manufacture and installation of the vibrating 

machines on the vibration transportation process can be more noticeable for the resonant 

vibrating machines (for example, electromagnetic vibrating conveyors with a spring 

elastic system).

In normal operation of the vibrating machine, when the frequencies of inactive

(spatial, the so-called parasitic) vibrations are far from resonant, inaccuracies within the 

limits presented in table. I.1, cannot have a notable impact on the transport and 

technological process; therefore, in simulation, for each spatial direction of vibrations, 

the vibrating machine is entereda resonance, and only after that, an increase in the 

magnitude of inaccuracies can cause disruptionin the transportation process. This 

approach reflects the true picture of the influence of inaccuracies on the technological 

process during the operation of the vibrating machine.

Below are some results of mathematical modeling of the system (I.41), (I.42), (I.43) 

when inaccuracies change within the limits presented in Table. I.1. Differential equations 

are solved by the Runge-Kutta method.

The simulation study was carried out at resonant active vibration with a frequency of 

50 Hz.

In each case of a numerical experiment, the frequency of one or another inactive

(parasitic) vibrationsY1, Z1, 111 ,, ��� is close to the resonant one (50 Hz), and when 

inaccuracies change within the limits presented in Table. 1.1, monitoring activity is 

performed over changes in the parameters (velocity, etc.) of the vibrational movement of 

TL.

Figures I.12 - I.16 illustrate the simulation results of vibrational transportation for an 

electromagnetic vibrating feeder operating in the resonant mode with a frequency of 50 

Hz.

The influence of changes in inaccuracies in the manufacture of parts of a vibrating 

machine and in its installation on the velocity and trajectory of movement of bulk 

material was studied.
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Fig. 1.12. The dependence of the velocity (V) and vertical trajectory (z3)

of TLon transverse vibrations (y1) of WM on change in errors

Fig.

I.13. The dependence of the velocity (V) and vertical trajectory 

(z3) of TL on rotary vibrations (��) of WM on change in errors  
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Fig. I.14. The dependence of the velocity (V) and vertical trajectory  (z3)

of TL on torsional vibrations (��) of WM on change in errors  

Fig. I.15.  The dependence of the velocity (V) and vertical trajectory  (z3)

of TL on vertical vibrations (z1) of WM on change in errors 
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Fig.I.16. The dependence of the velocity (V), vertical trajectory  (z3), 

and transverse trajectory of TL on transverse vibrations (Y1)

of WM on change in errors 

Fig. I.17. The dependence of the velocity (V) and vertical trajectory  

(z3) of TL on turning vibrations (��) of WM on change in errors 
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Fig. I.18. The dependencies of the velocity (V), vertical trajectory

(z3), reaction forcesof TL (Nz, Ny) on torsional vibrations (��) of 

WM on change in errors  

Fig. I.19. The dependencies of the velocity (V), vertical trajectory  (z3), reaction 

forces of TL (Nz, Ny)  on transverse vibrations (y1) of  WM on change in errors
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Fig. I.20. The dependencies of the velocity (V), vertical trajectory  (z3), reaction 

forces of TL (Nz) on turning vibrations (��) of  WM on change in errors

Three-dimensional vibrations, which are entereda resonance for strengthening them 

and, consequently, for studying their influence on the technological process, are 

mostlybelowresonance; their phases either coincide or differ little from the main active

resonant vibration.

It is obvious that the same closely resonant vibrations, the frequencies of which are 

out of the resonance zone, will affect the technological process in a different way.

Figure I.14 illustratesthe graphs,which describe the dependenciesof the velocity and 

trajectory on error in the manufacture of the machine under conditions of the 

subharmonic resonant mode [11] of the operation of the machine.

The patterns of the influence of inaccuracies on the transportation process in the main 

(50 Hz) and subharmonic (25 Hz) modes are not the same (Figures I.13 and I.17).

Similar relationships for the superharmonic resonance mode (100 Hz) are shown in 

Figures I.19 and I.20. It should be noted that unlike the subharmonic electromagnetic 

vibrating machines [12,17], machines with the superharmonic resonant modes of 

operation have not found application; this is due to high dynamic loads, energy costs and 

metal consumption of the structure of such machines; therefore, research in this mode is 

of a theoretical nature.

Thus, the studies carried out have shown that errors in the manufacture and 

installation of the vibrating machines and parasitic vibrations, arising on their basis,

disrupt the technological process and cause deterioration of the basic dynamic and 

operational parameters. However, there are cases when the transport speed remains 

constant, or tends to increase.

This suggests that in a few cases, instead of reducing the allowances for errors to a 

minimum (which is a quite a complicated task), it would be advisable to create such a 
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design of a vibratory exciter, where it would be possible to control the exciting force and 

its moment.

1.4.6.   Development of a new design of the vibratory feeder 

with an adjustable mode of the vibratory exciter

On the basis of theoretical (simulated) and experimental studies, the design of an 

electromagnetic vibratory exciter with an adjustable vibration direction was developed; 

the design is based on changing the direction of the exciting force relative to the 

direction of the axis of the elastic system (spring).

Fig. I.21. The electromagnetic vibratory exciter with a 

variable tilting angle and various types of vibrations

The elastic system is represented by helical cutting-through springs 2, which are 

connected to the electromagnet 4 by a bracket system on one side, and to the armature 5 

on the other side. In this case, the bracket system 3 with a slotted groove provides 

rotation of longitudinal axis a1 – a1 (a2 – a2)of the elastic system (springs) by an angle 

±� relative to the axis of action of the electromagnetic exciting force b – b.

The electromagnetic vibrator connectedto the through 6 is on the whole a vibratory

feeder designed for supplying bulk, lump or separate materials from the bunkers or other 

collecton chambers; it was developed on the basis of themass-produced electro-vibratory

feeder PEV1A - 065 × 1.8. The new electromagnetic vibrator makes it possible to excite 

elliptical vibrations of the working member and to adjust the axes of the ellipse, which 
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in turn allows to adjust the performance of the machine in accordance with the 

characteristics of material to be processed.

The vibration exciter makes it possible to excite vibrations in the working member

(the through, sieve, etc.) of the machine: rectilinear ones, when � = 0, elliptical, when �

�� �	� biharmonic, when the frequencies of the longitudinal 
�l) and transverse 
�tr)

vibrations are equal(
tr/ 
l = 1), as well aseight-shaped vibrations, when �tr���l =1/2; the 

said forms of vibration are obtained without the use of the additional vibratory exciters.

Change in the angle �allows for adjusting the machine to the optimal operating 

mode depending on the material to be processed, increasingits productivity and 

broadening the applicability of the machine in various technological processes.

The findings suggest that the combination of some inactive spatial vibrations with 

the main active vibrations can be useful, and they must be taken into account when 

designing the vibrating machines.
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Chapter 2.

The movement of bulk materials along 

the spatially vibrating plane of the finite rigidity 

 

Introduction

One of the significant factors affecting the process of vibration transportation is the 

elasticity of the working member, which is more or less apparent depending on its 

structural dimensions.

In the theory of vibration transportation, the working member is usually considered 

to be a rigid body; on this basis, a number of studies have been carried out, where as a

model of the transported material there are adopted either the individual lump parts 

(material point) or massive cargo (bulk materials) [1, 3, 7, 8].

The sources of research on the interaction of TL and the elastic surface of the 

working member of the vibrating machine are few in number. The impacts of dynamic 

(moving) loads on the elastic structures are considered in the papers [2, 15, 18, 22]. There 

are considered problems of the action of movable loads on the elastic planes and rods 

without the reverse impact. In work [22], the subject of research is a vibratory conveyor 

with a long working member; when considering bending vibrations of the working 

member, the external forces are represented by harmonic force and harmonic moment, 

which arise as a result of eccentric transmission of the exciting force, as well as by force 

coming from the elastic elements.

Figure 1.22 illustrates graphical form of solving this problem, where u – is the 

displacement of the point of the working member in an absolute system of coordinates;

y– the displacement of the conveyor through during transverse vibration.

Fig.I.22. Bending deformation (u) of the working member

and the vibration amplitude (y)
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In works [4, 20], an elastic working member was used for wave transportation with a 

phenomenological model of a bulk cargo. The elastic band is located on the transported 

surface, and transverse and longitudinal waves propagate on it; by varying their 

parameters, it is possible to form various combinations of traveling waves, which derives

the nature of the transportation process from.

2.1. The movement of the system "mobile load - elastic WM"

We represent the working member in the form of an elastic plane, which has a 

constant cross-section (Fig. I.23).

Consider the system “elastic working plane- TL-vibratory exciter”; it is assumed 

hereinafter that with an increase in the length of the working member, its elasticity is 

increasingly affecting the process of vibration transportation, and it is possible to choose 

parameters (dimensions) that will contribute to the intensification of the operating modes 

of the vibration machine.

Figure I.23 illustrates that the vibration plane m is a working member connected to 

the vibratory exciter of the elastic system k. Operational (movable) load can be 

represented by both bulk material and single lump materials with double-sided 

movements at the velocities of Vx, Vy and in the sliding or tossing modes.

During the operation, the working memberconducts two types of movement:

vibrational movement, when m is represented in the form of an absolutely rigid body 

(i.e., it vibrates with the frame) suspended on the elastic elements k, and deformative 

movement, when the working member is considered to be a plate with the distributed 

mass.

The movement of the mass M (TL) is conducted under the influence of the 

vibrational plane m, from which the above two types of movement (vibrations) are 

transmitted.

In the formation of the elastic strains of the working member, like plates, there take 

part:

1) The elastic force coming from the elastic system of the vibratory exciter (from

springs or bow springs)

                                  1

1

( ), ( 1,..., ),
n

i i

i

Q A kq t i n
�

� ��                                                         (I.44)
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Fig.I.23. The system: Elastic vibratory system – TL–Vibratory exciter

whereyis a generalized coordinate of the though (plane); n –the number of the 

generalized coordinates; k – rigidity of the elastic system of the vibrating machine;  Ai -

coefficient that takes account of rigidity decomposition of the elastic system on the 

coordinates qi;

2) The exciting force coming from the vibratory exciter 

                                   2 0 ( , ),Q Q f t x�                                                 (I.45)

where Q – coefficient determined by parameters of the vibratory exciter; f (t, x) – in the 

general case, non-linear and periodic law of the exciting force variation;

3) The distributed force of the though (plate)

                                   
..

3

1

( ),
n

i

i

Q q t�
�

� �                                           (I.46)

where�- the mass of the unit capacity of the though;

4) Cargo reaction force on the surface of the vibrating plane 

                                           4 ( , , ),zQ Q f x y z�                                            (I.47)

where Qz – in the case of an operational bulk load, it is a function of the coordinates of 

cargo movement relative to the surface of the though [1]; in the case of unit load, Qz is

determinedfrom the condition of pullout and attachment of cargo relative to the surface 

of transportation [1, 11].

If the deformations of the plate remain within the elastic range, the vibration 

equation will have the form
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whereh – is a plate thickness;    3 2/12(1 )D Eh �� � - bending rigidity; � - Poisson’s ratio;  

( , , )x y t� - divergence of a point from equilibrium.

For a plate freely supported by its edges, the form of the solution for the 

homogeneous part of the equation (I.48) has the form

                            
3

4
1 1

4
sin sin ,ij

i j

Mga i x j y

BD a b

� �
� �

�

� �

� �

� ��                               (I.49)

where ij� - is a generalized coordinate of deformation.

The external force can be decomposed in a series 

               
1 1

sin sin ,ij

i j

i x j y
F Q

a b
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� �

���                                          (I.50)

where ijQ represents the sum of forces (I.44) (I.45) (I.46) (I.47).

If the displacement of a material point is considered, the equation (I.50) will have 

the form [3]

                          sin sin .
yx

z z

i V ti V t
Q N

a b

��
�                                                     (1.51)

If we put (1.50) and (1.52) into the equation of vibrations (1.44) and take into 

account (1.51), we obtain the equation for the coordinates ij�
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The right-hand side of the equation (I.52) involves the coordinates of the movement 

of the though as a rigid body, and the coordinates of the movement of TL; therefore, 

when solving, the equation (I.52) must be considered together with the equations of the 

through as a rigid body and with the equations of the displacement of TL. For its part, the 

influence of the elastic forces from the elastic strains should be reflected in the equations 

of motion of the though and TL. 
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2. 2.   A spatial dynamic model of loaded vibrating 

transport machine with the elastic WM

Let us represent the working member in the form of a rectangular plate with the 

corresponding dimensions and elastic characteristics (Fig. I.24). The coordinate system 

Oxyz describes the movement of the working member (m), as a rigid body, the axis of 

which coincides with the direction of the exciting force inclined to the inertial system 

Ouvw at an angle 
. The movement of technological load (M), represented by a cubic 

body, in which the entire mass of load is concentrated, is described in a coordinate 

system EXYZ immovably attached to the working member.

Fig.I.24. The motion of the loaded working member ib space 

To describe the rotational motions of the mass M, a coordinate system is attached to 

it. The movements of the working member and TL will be described by the Euler angles 

1 1 1, ,� � � and 2 2 2, ,� � � , respectively.

As noted above, in the case under consideration, an attempt is made to take into 

account the elastic strains of the bottom of the working member in a mathematical model 

of the system "vibratory exciter - WM - TL". In this case, instead of a separate 

consideration of the active and reactive parts of the electromagnetic vibrating machine, 

one thing is considered - the reduced mass of the working member.
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The working member of the vibrating machine will be affected by the exciting force 

Qex coming from the vibratory exciter, the elastic force from the elastic systemQel, and a

normal reaction of TL Nz. The stiffness of the vibrator suspension is taken to be equal to 

zero.

Due to a deformation in the working plane of the vibrating machine, points O1 and Ai

will be in the positions 
'

1O and
'

iA (Fig. I.24); the vectors O1O3, O1Ai and O2O1,

respectively, will be replaced by the expressions

               
   

�� '

11313

'

1 OOOOOO ;
   


� '''

1 iiii AArAO ;
   


� '

111

'

1 OOOOOO                       (I.53)

In what follows, let us accept that the working member is deformed only in the 

direction of the minimum rigidity of the plate (bottom). Then, the first expression of the 

system (I.53) takes the form

;)( 33

'

1 xOO x � ;)( 33

'

1 yOO y � ,)( 33

'

1 zOO z �� �                            (I.54)

where 
b

yi

a

xi 11
0 sinsin

��
�� � is the elastic deformation in the direction to 

33 zO ; a and b— the 

length and width of the plate; the projections of the second and third expressions (I.53)

will be obtained in the same way 

                (���	
�)� = �	�; (���	

�)� = �	�; (���	
�)� = �	� + �;

               (���
�)� = ��; (���

�)� = ��; (���
�)� = �� + � �
� �,                   (I.55)

where 1 ;	 	 
� 
 ��is the angle of the plate to the axis Ox.

The projections of the fixing points of the elastic elements and changes in the 

rotations of the angles of the coordinate axes connected to the working member will be 

expressed in a similar form. Due to their smallness, these changes are not taken into 

account in a mathematical model considered in this work.
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2.2.1. The kinetic and potential energies of the system "vibratory 

exciter – elastic elements - WM of the vibrating machine - TL",

taking into account the elasticity of WM.

In the case of the kinetic energy expression with account for (I.53) (Fig.I.24), the 

determination is carried out in the same sequence as in the case with the active working 

member (see Chapter I, paragraph 1.2.2.)


� =
�

�
� �	[����

�
+ ���

�
× (

��
	
� ����

� � ����
�

�

) + ����
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× �	
�

+ ����
�

+ ����
�

× �	
�

�

]�, (I.56)

where Mi - Mi – the mass of load particulate Bi; '
1O

V - the velocity of a point O1'; 
1O� - the 

angular velocity of a point O1; '
1O

� - the angular velocity of a point O1; ri – the radius-

vector of particulate Ai;
3OV - the velocity of a point O3;

3O� - the angular velocity of a point 

O3;
'

ir - the radius-vector of particulate Bi.

The kinetic energy expression with account for (I.53) of the working member will 

have the form

                            2'
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2 )]([
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1 1

1
'
1

  

�

  


�
� � OOrVmT i

n

i

OOi � ,                              (I.57)

wheremi – is the mass of particulate Ai.

In order to determine the potential energy of the linear elastic systemof the vibratory 

exciter and a deformation of the working member, it is possible to use the expression

                            � =
�

�
�[��(��	�)� + ��(��	�)� + ��(��	�)�],             (I.58)

where, unlike the adopted method (Chapter I), the coefficients of rigidity , ,z y zk k k are 

determined by taking into account the bending rigidity of the working member, while the

projections , ,ix iy izl l l� � � are determined by taking into account the expression (I.53). The 

potential energy of TL and the system’s dissipative functions are determined 

analogously.

The projections of the kinetic energy system on the coordinate axes are determinedas 

in the case with the active working member (Chapter I) with account for (I.54) and (I.55) 

and will be the sum of the kinetic energies of two masses m1 and m3.
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Given that deformations of the through as anelastic body are considered in the 

direction of its vertical displacement, the same external forces will be put into the 

differential equations of deformations of the body, taking into account (I.54) and (I.55), 

which were the part of the equation of vertical motion of the elastic working member. As 

a rigid body (Chapter I).

According to the expressions (I.56) (I.57) (I.58), and using the Lagrange’s equation 

of the second kind, we’ll obtain the differential equations of the associated movements of 

the working member and TL; this case because of space limitation will not be considered 

here; we would just note that in the general equations, the components with elastic

deformations will be of a type of �
..

��,��
.

��� and so on. In addition, the equation of the 

bottom deformation will be added to the total number of the equations of the working 

member, like a plate (Fig. I.23), taking into account the spatial movements of transported 

material and the working member, which has the form as follows 
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           (I.59)

where X, Y, Z – displacements of the friable material (TL - M3), the coefficients bx,

by,…, d71, d72 at the displacements and velocities characterize the spatial elastic and 

damping properties of the vibratory exciter and the conventional elastic system of TL,

and they are determined by the coordinates of fixing the elastic elements to the masses 

and their elastic-damping characteristics [5]; Q is an exciting force, determined 

depending on the type of the vibratory exciter.

If we exclude nonlinear inertial forces ) in the form of the product of coordinates and 

their derivatives from the equation (I.59, as well as those elastic and damping forces that 

are small compared to the forces acting mostly in the vibration (active) direction, we 
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have the equation (I.52) obtained from the general equation of a plate with a movable

load (Fig. I.23) 

When solving the equations (I.59) together with other equations of the working 

member and TL, the reaction of a single load on the surface of the WM must be 

considered depending on the type of deformation of the bottom (plate), that is, in the 

equation (I.59), the response of load will have the form:

                                      ]sin[sin
b

Yj

a

Xi
NQ zz

��
� ;                           (I.60)

When bulk material moves across the surface of the through (plate) with the same 

thickness, then  

                                              
zz NQ � ,                                                 (I.61)

 

that is, it is assumed that the transported material is continuously fed onto the WM, and 

the bottom of the WM is being constantly under the dynamic load.   

2. 3. A mathematical model of spatial motion of the system "vibratory

exciter-WM of the vibrating machine with an elastic bottom - TL"

To simplify the equation of the associated motion of TL and the elastic WM, it is 

advisable to make some assumptions: 1) in the equations of the WM, not to take into 

account the responseof TL to the WM; 2) in each equation, the forces of elasticity and 

damping are taken into account only on those coordinates along which the motion is 

considered; 3) due to the smallness of the rotational movement of the TL, its movement 

is considered only in three linear directions; 4) nonlinear components in the form of a 

product and the components of an inertial nature, not higher than the second order, are 

taken into account in the equations of motion of TL.

These assumptions,in normal operation of the vibrating machineallow to obtain a 

true qualitative and sufficiently quantitative picture of the transportation process on the

elastic WM.

The equations of spatial motion of the WM, as a rigid body will have the form: 
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where ��� JJJ ,, - the moments of mass mrelative to the axes of a coordinate

systemOxyz .

Elastic deformations of the non-rigid WMare describing by the equations
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where                   
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xb and zb are determined taking into account rigidity of the elastic system of the 

vibrating machine and the bottom of the WM; �Q - exciting force coming from the 

vibratory exciter; zQ - a normal response of load to the bottom of the WM; in the case 

with unit loads zQ will have the form (I.60) .

The movement of technological load is described by the differential equation system 
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where A, B, B1, B2, D, E, E1, C – the coefficients describing the properties of transported 

material; among them, B, D, E, E1, and C – vary according to the position of load

relative to the WM [ 1, 11] .

In the equations (I.64), the influence of the WM elasticity is taken into account by 

the coordinate� included in other, linear or non-linear components in the form of a 

product with other coordinates. Among them, a dominant impact is exerted by the 
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components, where the acceleration of the elastic deformations (inertial terms) enter in a 

linear form, for example, 		� coscos 1

..

in the first equation and 		� sincos 1

..

in the second 

one.

2. 4.    Mathematical modeling of the process of spatial

vibrating transportation along the elastic plane

The subject of the research was an electromagnetic vibratory feeder with a vibratory 

exciter C-920, with a resonance frequency of 50 Hz [11].

The vibro-transportation process on the elastic surface is described by the equations 

(I.62) - (I.63) with respect to the WM and TL of a certain type. To study the impact of 

different rigidities of the bottom of the elastic WM on the transportation process, it is 

necessary to change rigidity of the bottom surface, i.e. its dimensions, and in order to 

simplify the problem, it can be represented as a set of homogeneous plates. By changing 

the rigidity of such WM, it is possible to obtain different frequencies of the elastic 

deformations.

This approach provides the opportunity to study the impact of different rigidities of 

the bottom of the WM, as well as the impact of the linear and nonlinear elastic 

deformations on the transportation process. The occurrence of the resonant elastic 

deformations of platinum is based on the transfer of a nonlinear electromagnetic force or 

nonlinear elastic force from the elastic system of the vibratory feeder (equation (I.63).

When studying parasitic spatial vibrations (Chapter 1), with a view to identifying the 

nature and features of their impact on the transportation process, it was possible to 

confine ourselves to change in the frequency of the exciting force near resonance in a 

relatively small range (for example, at three points - before resonance, in resonance and 

after resonance in increments of 1, 5 - 2 Hz); the same approach will also be used in this

study.

Similarly, as stated above, when studying the impact of resonant vibrations, with a 

view to saving machine time, there is no need to consider change in rigidity of the plate 

within wide limits, since during resonance withdrawal, for example, in the zone and 

above, the amplitude decreases significantly. Therefore, by solving the equations (I.62) -

(I.64) in the zones of 
 ± 2 Hz, the obtained results can be used to providesome 

indications of trendsin the influence of the amplitude (frequency) of the elastic 

deformations of the WM on the process of vibro-transportation.

Below (Fig. I.25 - I.32) are dependency graphs of the velocity and trajectory of the 

vibratorydisplacement of bulk TL on a combination of various resonant (25, 50, 100 Hz) 
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activevibrations of the WM frame and the corresponding resonant elastic deformations of 

the WM’s bottom.

Fig.I.25. The dependence of the velocity and trajectory of TL V and Z

on the amplitude and the frequency of deformation of the WM’s bottom 

during the phase coincidence with operating vibration of WM

Fig.I.26. The dependence of the velocity and trajectory of TL V and Zon the 

amplitude and the frequency of deformation 
���of the WM’s bottom (Fig.I.26b)

during the phase non-coincidence  with operating vibration of WM (Fig. I.26�)
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Fig.I.27. The dependence of the velocity and trajectory of TL V and Z on the 
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���.I.29. The dependence of the velocity and trajectory of TL V and Z on the amplitude 


��������������������������
�����
������������ !�"�������������!�"�
������
(
�=25Hz) resonant mode of machine operation during the phase displacement�and x

Fig.I.30. The dependence of the velocity and trajectory of TL V and Z on the amplitude 


��������������������������
�����
������������ !�"�������������!�"�
������ (
�=25 

Hz) resonant mode of machine operation during the phase coincidence �and x .
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Fig.I.31. The dependence of the velocity, trajectory and normal response on the 

amplitude and the frequency of deformation 
���of the WM’s bottom in the subharmonic

(
�=25 Hz) resonant mode of machine operation during phase displacement � and x

Fig.I.32. The dependence of the velocity and trajectory of TL V and Z on the amplitude 


��������������������������
�����
������������ !�"�������������!�"�
������ (
�=100

Hz) resonant mode of machine operation during the phase coincidence � and x

2. 5.    Development of new designs of the vibratory feeders 

with an elastic bottom of the WM

The simulation results show that the WM with finite rigidity can make major 

differencesin the patterns of the vibration technological process in comparison with the 

rigid WMs.

The need to take into account rigidity is primarily basedon the need forincreasing the 

dimensions of the WM of the vibrating machines without increasing their thickness, as 

well as by the application of a concentrated exciting force to a certain point of the 

working member, which is not evenly redistributed over the entire surface.

65 
 



Another consideration for taking into account rigidity is that low rigidity of the WM 

can have a positive impact on execution of technological process; this assumption is 

based on the possibility of increasing the total amplitude, which consists of two types of 

vibration: 1) the vibration amplitude of the WM as a rigid body (in the form of an 

oscillator) and 2) the amplitude of the elastic deformations of the bottom of the WM as 

an elastic deformed body.

A certain combination of the mentioned amplitudes can give a positive effect in 

vibration treatment of materials, or in other technological processes. In particular, an 

increase in the total amplitude of the vibrating conveyor will contribute to an increase in

the displacement velocity of material; in addition, the elastic deformations of various 

shapes can be successfully applied to cleaning the vibration tanks, vessels, wagons, etc. 

The effect can be increased if deformation of the elastic surface enters resonance with the 

exciting force or with vibration of the WM body. It should be noted that for the large-size 

WM and heavy operational load, this is found to be difficult to implement, since it 

requires the reduction in the thickness of the working surfaces to the dimensions that are 

unacceptable in technological processes with heavy loads.

Obtaining an increased total amplitude of the WM is prevented by its inertia 

(Fig.33b), since, under the effect of the force Q, the WM moves together with the frame 

to the amplitude Ak, and simultaneously itself deforms (in the first form) to the amplitude 

A� or A
’
�in the direction opposite to the force Q, which can reduce the total amplitude.

One way to achieve the desired effect is to use counterweights at the ends or contours 

of the plane; for other forms of deformation (n > 1), the solution can be different both in 

design and depending on the technological process.

Based on the analysis of various designs of the elastic working members and 

theoretical studies, the design of a vibratory feeder with the elastic WM was developed 

(Fig. I.33a).

The originality of the elastic vibrating through 3 is that the plate 4 is connected to it 

and its elastic rotation (deformation) is carried out in-phase with respect to vibrations of 

the through 3, that is, in the direction of transportation of technological bulk cargo. The 

plate is rigidly connected to the wall of the through 3, while the loads are attached to the 

plates 5, and the frequencies of natural rotational vibration of the plate are multiple to the 

frequency of the exciting force.
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Fig.I.33. a) – The working member with;

b) – section A-A: a counterweighted elastic plate.

                             ),3,2,1(;/�
�� �� nn�
 �

��                            (I.65)

The parameters of the plate and the counterweight are determined by their design and 

inertial characteristics, which provide the occurrence of resonant rotational vibrations of 

the platinum relative to the exciting force. � and  s are the distances between the plates, 

while � and � are the angles of vibration and tilt of the working member.

The vertical amplitude of the extreme point „a“ of the plate 4, vibrating in-phase relative

to the stationary flat system ���, is equal to:

�
�� AAA 
� ,

where 
���

'A - is the amplitude of vertical vibration of the through (the working member’s 

frame), .�
A - is the amplitude of the elastic deformation of the extreme point „a“ of the 
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plate. The vibration amplitude of the extreme point „b“, which is become out of phase

relative to the counterweight 5 of the plate, is equal to:

���

���

'AAW 
� ,

where 
���

'A - is the amplitude of vertical vibration of a point „b“ from the side of the 

counterweight attachment.

Thus, in the process of vibration, the plate 4 from the side of the upper part 7 rotates 

at an angle� towards the direction of transportation, which contributes to an increase in

productivity.

By choosing the parameters of the plate 4 and mass 5, it is possible to adjust natural 

torsional vibrations of the plate to a certain frequencythat is multiple to the frequency of 

the vibratory exciter and thereby achieve vibrations of one edge of the plate in the in-

phase mode with the vibratory exciter.

By tilting the through at an angle �	 ##0 towards the movement of material, it is 

possible to carry out additional regulation of productivity and technological parameters 

and at the same time to exclude the rotation of the portable surface 7 in the opposite 

direction to the movement of material.

The presented design of the through will allow to significantly increase the 

productivity of the vibrating machines (vibrating feeders, vibrating conveyors), and by 

increasing the vertical component of the vibration amplitude in the transportation process 

with stratification, drying, mixing, etc., to increase the mobility of hardly transportable

materials (wet, finely dispersed, etc.).

Conclusions

1. Possible deviations in the transmission of the exciting force to the working 

member and in the design arrangement of the coordinate systems of masses due to errors 

in the manufacture and installation of the vibrating machine and the specifics of the 

elastic system are considered.

These deviations were taken into account in the interrelated equations of motion of 

the system "vibratory exciter - working - operational load", and the nature of the 

influence of spatial "parasitic" vibrations of the working member on the behavior of 

operational load was investigated.
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The simulation results showed that the combination of some spatial vibrations with 

operating vibrationis having a positive effect, and in the future they can be used for 

practical purposes.

2. The equations of spatial motion of the system "vibratory exciter - working member

with an elastic bottom - operational load" have been composed and the effect of the 

bottom deformation on the behavior of operational load has been investigated.

Studies have shown that it is possible to increase the total vibration amplitude of the 

elastic bottom of the working member, as well as to increase the intensity and velocity of 

the movement of bulk material along the elastic surface. The structural changes of the 

existing working members are outlined to improve the technological process 

characteristics.
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PART II

CALCULATION AND MODELING FOR DYNAMICAL 

STABILITY OF THE ELECTROMEGNETIC VIBRATING 

MACHINES

Introduction

The vibrators are having many industrial applications and can be used to obtain 

mechanical vibrations used in vibration technologies, for example: for shaking concrete 

and other mixtures, vibration transfer of bulk and viscous substances, activation of 

chemical processes in liquid and bulk media, and so on. The resonant vibrators are the 

most efficient energy consumers when converting electrical energy into mechanical 

energy. The vibratory exciters can have different designs and constructions, but the basic 

principle of their operation is the same - generating the vibration in the movement of two 

masses, one of which is a working member.

For all vibrators, one of the integral parts is the elastic element. In the vibrating 

machines, there are mainly used cylindrical helical springs with a circular cross-section 

(II.1) and the flat spring systems (II.2), whose rigidity is calculated according to the 

following formulas.

                                   ��� =
���

������
                                                                (II.1)

                                   ���� =
�����$

��
,                                                           (II.2)

where D - the average diameter of coil, d - the wire diameter, G - elastic shear modulus, 

lw- the wire length, E - the elastic modulus, I – the second area moment; l - the length of 

bow springs. 

Figure 2.1 illustrates the design model of the double-sided clamped spring arrangement.

Fig. II.1. The double-sided clamped spring Arrangement

The type of the elastic systems and their damping coefficients are of great 

importance, since they play an important role in the dynamic stability of the vibrating 
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machines during operation. The elastic elements can have both linear and non-linear 

characteristics. In terms of nonlinearity, they can have hard or soft characteristics.

Although the electromagnetic vibrators have a very simple design, their theory and, 

therefore, the mathematical description of their dynamic and sustainable conditions is 

quite complex and involves fundamental issues of vibrational theory.

1. The torsional electromagnetic vibrating machine

Among the vibrating machines with various elastic systems, in practice, machines 

are used whose elastic elements work under torsion. Along with flat bow springs and coil 

springs, the torsion bars are the main type of the elastic elements used in the vibrating 

machines, exciters and bunkers [1, 2]. The torsional elastic elements springs have several 

advantages over other elastic elements such as leaf springs or coil springs.

These advantages include the manufactur ability of the torsion bars, greater compactness 

and design ability, increased durability and stability in operation, the improved 

availability per unit weight of the torsion shaft, due to the specificity of the stress state 

during torsion, which enables, other things being equal, to reduce the weight of the 

torsion bars by 30 - 35%; the absence of additional stresses caused by inaccuracies in the 

manufacture of the torsion bars (typical of the processes of winding coil springs or leaf 

spring pressing). The torsional elastic elements are characterized by lower losses due to 

structural friction in the fixturings compared to the spring arrangements and a lower 

noise level than in the spring systems [3, 4, and 5].

A simplified diagram of the torsional electromagnetic vibrating machine is shown in 

Figure II.2. It consists of an active mass (AM) 1 with a through 2 and a reactive mass 

(RM) 3, which are interconnected by means of the torsional elastic elements 4, and a 

bicyclic electromagnet 5, which excites and maintains vibrations.

Fig.II.2 A simplified diagram of the torsional electromagnetic vibratory exciter  
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The torsional elastic system I used in the electro-vibrating machines is an elastic

frame (Fig. II.3) and consists of two torsional bars 1 and one connecting lever 2, which 

connects free ends of the torsion bars. The frame is loaded with torsional and bending 

moments as well as with a shear force. Such flat and elastic frames, the number of which 

is equal to eight, are located in space symmetrically relative to the longitudinal and 

transverse axes of the machine. Each frame has series-connected two torsion bars and one 

lever; therefore, the total pliancy is equal to the sum of pliancy of the individual 

elements. [6, 7].

Fig.II.3.The elastic system of the vibrating machine: a) torsional 

frame; b) forces operating in the fixturing  

In the process of vibrations, the torsional elastic frames are in a complex deformed state 

of torsion and bending [6, 8].

2. Calculating the rigidity of the elastic frames at small deformations

During vibrations, the displacement of AM relative to RM, associated with torsion 

of the torsion bar, due to the equally-spaced location of the elastic frames, takes place in 

the direction of longitudinal axis of the machine, i.e. in the thrust line of the 

electromagnet and inertial loads. The design scheme, by the type of the effect of force is 

planar-spatial and statically indefinite [6, 9].

In the planar-spatial systems, the internal power factors in the section of plane of the 

frame are equal to zero; therefore, in order to unveil static uncertainty, it is sufficient to 

identify the internal power factors acting in the plane perpendicular to the frame section. 

Static indeterminacy is unveiled by the force method. The canonical equations obtained 

in this case have the form as follows:

                                                �11 x1+�11 x2+�11 x3=-�1 Pt;

                                     �21 x1+�22 x2+�23 x3=-�2 Pt;                            (II.3)

                                                �31 x1+�32 x2+�33 x3=-�3 Pt;
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where �ji are coefficients denoting the mutual displacement of points of the system, 

the first index corresponds to the direction of movement, the second one - to the force 

number that caused this movement; Xk - unknown power factors; �k Pt – the 

displacements from an external force. 

There is no connection on the frame that would prevent the movement in the 

direction of X1 (the external force Po acts along the x-x line (Fig. II.2.b). Therefore, X1,

�11, �12, �13 are equal to zero.

Table II.1 shows the values of coefficients of possible displacements � and ��

obtained by the Vereshchagin rule, where I is an axial torque of the torsion bar section, 

I0- is the second area moment of the lever section on a torsion, Ik is the moment of inertia 

of the section of the torsion for torsion, Iko is the moment of inertia of the section of the 

torsion for torsion, Pt - longitudinal component of the external force Po, l - the torsion 

length, r - the lever arm, E - the elasticity modulus, G - the transverse modulus of 

elasticity, � - Poisson's ratio.

                                                                             Table II.1.
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After unveiling static uncertainty from the equations (2.1), we get 

                          X2 = Mk = K1Pt r; X3 = Mu = K2Ptl;                         (II.4)

                                      K1 = 0.5;    "� =
�,����

���
;    # =

����

(� �)�!
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where Mk- torsional moment, Mu- bending moment. 

By multiplying the total force moment diagram, (Fig. II.4) by the diagram of the 

moment of a unit force applied to the pinch point, we get the displacement of AM 

relative to RM in the plane perpendicular to the frame section, i.e. in the direction of P:

Fig. II.4. The total force moment diagram 

� =
"���!
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����
                 (II.5)

Linear rigidity of the torsional elastic frame equals  

                         �� =
���

��!
	�(������	���)

                                                    (II.6)

where
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� �"	���	
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             (II.7)

Coefficients Z1, Z2 and Z3 show, respectively, the influence of a bend in the torsion bar, a 

ben in the lever and its rotation on linear rigidity of the frame.   

Despite the fact that, according to initial assumptions, the equations (II.5) and (II.6) 

are linear, however, both experimentally and theoretically it is proved that due to the 

opening of the torsion pinching nodes, rigidity of the elastic system is a nonlinear 

function of the vibration amplitude. In this design, the connecting arm consists of two 

beams rigidly packed together by means of the fastening bolts. At low vibration 

amplitudes, the beams work on torsion and bending as a monolithic system. An increase 

in the load leads to a gradual slippage at the beams' fixing points, as a result of which the 

torsional and bending rigidity of the lever goes down (GIko, EIo). In the process of 

vibration, changes in the parameters Iko, l affect the magnitude of the coefficient K2. For 
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example, with an increase in the displacement of the masses of the vibratory exciter from 

zero to 1,2.10
-3

m, K2 varies in the range of 0.5%0.95. In the process of deformation, the 

rigidity is mostly affected by the varying (by about 25%) active working length l of the 

torsional bar. As is clear from the equations (II.5), (II.6), (II.7), rigidity of the system is 

mainly associated with the first term, therefore, change in l directly, and not through Z1,

Z2, Z3, affects rigidity Kt and creates a noticeable nonlinearity, which is the reason that Kt

� const.

3. Determination of the lateral force during 

deformation of the torsional elastic frame 

The rectilinear parallel displacement of AM relative to RM, and curvilinear (along 

the arc) motion of the lever ends, at high vibration amplitudes (Fig. II.3), cause 

deformities of the elastic elements in the plane of the frame section, and therefore lateral 

force Pr appears. 

Fig.II.5a. The diagram of the 

summation of longitudinal (Pt) and 

transverse (Pr) forces

Fig.II.5b. Variation in the magnitude of  

longitudinal and transverse forces

depending on the torsional angle of the 

torsion bar 

Flexural rigidity of the torsional elastic system in the plane perpendicular to the 

direction of the motion of masses further prevents the displacement of AM relative to the 

RM. Thus, the traction force of the electromagnet and inertial loads from the acceleration 

of longitudinal motion of AM and RM decompose into the longitudinal Pt and Pr

components, which change direction and magnitude with an increase in the vibration 

amplitude (Fig. II.5a).
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As evidenced in Figure II.5a, when AM moves relative to the RM by the value �, the 

distance between the masses increases by �r. This increase is offset partially by the 

lateral bending of the torsion bars. Thus, without the torsion bar deflection, the 

movement associated with a torsion of the torsion bar and the lever cannot be realized.

Figure II.3 shows that

                           �r = ri - r ,                                                               (II.8)

where �r = Prl
3
/3EI0 the deflection of the torsion bars caused by lateral force.

After substituting the values �r and ri = r/cos� for (II.8), we get an expression 

connecting the lateral force Pr with an angle of torsion (rotation) of the torsion bar � =

�/r

                   �! =
���!

��
(

�

#$%�
� 1)                                                               (II.9)

To facilitate the further use, we expand [(1/cos�) -1] in a series

                              
�

#$%�
� 1 = 1 +

�

�
�� +

�

�&
�& +�� 1

Due to the smallness of � (for the vibratory exciter with a capacity of 1 kW at 

�=5.10
-4

m, (� = 0.002 rad), it is advisable to write (II.9) in the form as follows

                                         �! =
���!

���
��                                                     (II.10)

It can be seen from (II.10) that the lateral force is a nonlinear function of the vibration 

amplitude �. The non-linearity of lateral rigidity has an impact on the torsional rigidity 

characteristic. Therefore, the nonlinear rigidity characteristic of a torsional elastic system 

(due to a change K2, l) increases with allowance for lateral force.

The ratio of stresses corresponding to the acting forces equals 

                           
&�

 &	
=

���'	

�
�'�
=

���	��'	

�"�!
���'�(������	���)�	

,                                   (II.11)

where W1, W2 – the torsion bar section module under bending from the acting forces P1

and P2, respectively. For a torsion bar with a hexagonal cross-section, the expression 

(II.8) takes the form 
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&�

&	
= 0,426

��	

"�!
�(������	���)�	

                                         (II.12)

4. Analysis of the rigidity characteristics 

of the torsional elastic frame

Despite the fact that longitudinal and lateral rigidities have separately the linear 

characteristics, the overall rigidity of the machine, without considering the impact of 

slippage in the pinching points of the torsion bars, at the large vibration amplitudes turns 

out to be nonlinear. This is caused by a nonlinear force Pr (Figure 2.5a), which, due to the 

relationship between the lateral and longitudinal rigidities of the torsional frame, gives 

the elastic system a nonlinear rigidity characteristic.

Based on the analysis, it turns out that the nonlinear characteristic of the torsional 

elastic frame is due to both slippage in the fixturings and the lateral force Pr.

At low vibration amplitudes, the rigidity characteristic of the torsion frame is soft, 

caused by slippage in pinching. At large vibration amplitudes, a transverse force Pr

appears which compensates for the effect of slippage. With a further increase in the 

displacement, the effect of Pr increases noticeably in comparison with slip into pinches. 

Thus, the torsional elastic frame is a nonlinear system and has a soft characteristic at 

small amplitudes, and rigid one at large amplitudes.

Due to the fact that the torsional frame does not have a connection that prevents the 

AM displacement along the transverse axis of the machine, transverse vibrations may 

appear in the system together with longitudinal ones. However, transverse vibrations do 

not progress at the specified operating frequencies, since the rigidity Kr is one level 

higher than Kt [6, 8]. In expression (2.5), we denote by KKT = GIk/L � Kut=3EI/L
3

the 

torsional and bending rigidities of the torsion bar. After the agreed notations, (2.5) takes 

the form

                        ""� = "�"��
�(1 + �� + �� + ��);                                        (II.13)

Taking into account

                         " = #(�
�,                                                                         (II.14)

we get

                        ""� = 4�#(�
�$�

���(1 + �� + �� + ��);                           (II.15)          

79 
 



where mb – reduced mass;  � - free circular frequency in radians; f1, - vibration 

frequency of the vibratory exciter in hertz; n – the number of the torsional elastic frames.  

By means of the equations (II.15), the geometric parameters of the torsional elastic 

frame are directly determined, which provide the required rigidity and frequency for the 

remaining parameters of the machine, specified out of concern for the design 

considerations.

At vibrations, the elastic element performs a complex movement in space [10], which 

is transmitted to the working member of the machine. Additional vibrations (transverse, 

vertical, rotary) are amplified when symmetry,  i.e. the equality of individual rigidities of 

the torsional elastic frames relative to the axes of the machine is broken, When the free 

frequencies of individual vibrations coincide with the exciting frequency (or with 

frequencies multiple to it), additional resonances may arise in the system. These 

vibrations can both reduce and increase the productivity of the machine [1].

5. Design of the torsional elastic frame for the rigidity taking 

into account strength in a 25-Hz vibratory mode

When calculating the rigidity of the torsional elastic system of the vibratory exciter 

providing the 25-Hz mode, it is advisable preliminary to estimate the utilization rate of 

the elastic element material [2].

                       �� = � �%�
)

�
=
"�!

	*

&�
(1 + �� + �� + ��);                           (II.16)

where V is the volume of material.

Taking into account the consumption of the expensive spring steel and based on the 

design considerations (especially in relation to compactness of the machine), the length 

of the levers and the torsion bars specifies the parameters. Further, the overall dimensions 

of the elastic elements are adjusted taking into account the plaices of the clamped parts of 

the torsion bars, and their diameters are determined.

Considering that the torsional moment of inertia of the polygonal torsion bar is equal 

to Ik = Kid
4
, where d is a diameter of an incircle inside the polygon, Ki is the 

dimensionless coefficient.

% = �"��

"��

�
= �&���

	+�
	!	�(������	���)

"��

�

                                                    (II.17)

It should be noted that the calculatory rigidity and weight of the elastic system of the 

low-frequency 25-Hz vibratory exciters are 4 times less than in the main resonance mode 
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(50 Hz). However, in order to avoid affecting the performance of the machine, it is 

necessary to increase the vibration amplitude of the working member (in the case of the 

same velocities). This causes an increase in stresses of the elastic elements of the 

torsional frame. Therefore, it is necessary to test the torsion bars to destruction to 

calculate the parts that work simultaneously in torsion and bending.

' =
)�

'�
;           & =

)


'

;              &( = �4'� + &�.                                   (II.18)

Further, the torsional, flexural and overall strength margins are determined taking 

into account the maximum stresses, 

�' =
'��((')�

'
;          �' =

&��((&)�

&
; �( =

�'�&

��'	��&	,                                        (II.19)

where &����'��� are the endurance limit stresses of material under bending and torsion, 

respectively; )('*d��)(&*d�– the influence coefficients of the absolute dimensions (scaling 

factor) under torsion and bending, respectively, for a smooth shaft with a diameter d.

Thus, when calculating the elastic element of the 25-Hz and sub harmonic vibratory 

exciters, the following requirements are met: doubling the vibration amplitude of the 

working member with a view to ensuring the required average transportation velocity 

�����+,���reducing the rigidity by 4 times Kto = Kt/4, and adjusting the obtained values [2].

Using the equations (II.5), (II.6), (II.7), we obtain

��

!	�(������	���)
= 4

��
���

!�
	��(�������	�����)

                                                  (II.20)

'�!

�
(1 + �� + �� + ��) =

'���!�

���
(1 + ��� + ��� + ���),                          (II.21)

where the index o is put for the parameters of the elastic elements providing 25-Hz 

and sub harmonic resonances.

While maintaining the values r=ro; L=Lo; d=do, according to (2.20), we’ll obtain that 

no =n/4,, and from (II.21) ��'+����'� that is, the mass of the elastic elements decreases by 

4 times, however, an increase in '� by 2 times causes a decline in the reliability of the 

machine due to an increase in the operating stresses of the torsion bars.
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Consider the case when n=4no, '���'�+, for �+����. Based on the design 

considerations, we will make the ratio of the lever lengths and the torsion bar a constant 

(usually i=1.5%1.7), in the main and subharmonic modes

!

�
=
!�

��
= �                                                                                            (II.22)

After solving the system of the equations (II.20), (II.21) (II.22), we obtain do = 1,5d; 

lo=1,74 l; ro=ilo. Thus, after adjustment, the mass of the elastic element decreases 2.2 

times. If condition (II.22) is replaced by the condition L/Lo =1, we obtain do=2d; ro= 4r,

i.e. the mass of the elastic element decreases 1.5 times.

Analysis of the equations (II.5) ÷ (II.7) shows that the decline in the torsional rigidity 

of the lever increases the pliancy of the torsional frame. Consequently, the stresses on the 

frame are reduced. This allows reducing further the mass of the elastic system without 

reducing the strength margin. Based on the studies, it can be concluded that from the 

viewpoint of savings of material of the elastic system, the torsional frame is effective in 

comparison with springs and bow springs [2, 6]. 

6. Determination of the damping coefficient

The elastic elements of the frame are twisted and bent under the effect of a periodic 

exciting force. In this regard, as a result of joint action by the forces of elasticity and dry 

friction, energy dissipation occurs in the places where the elastic elements are pinched 

(Fig.2.6 a, b). 

                    
Fig. II.6. Oscillograms of damping of free vibrations of

the torsion bar: a) torsional; b) bending 

The structural damping coefficients of torsion and bending can be experimentally 

obtained using the energy method, after processing the oscillogram of free damped 

vibrations [11].

                                        � =
�

��
=
�� �����

��
,                                                     (II.23)
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where m0 –the number of periods, As and As+mo- the vibration amplitudes at the beginning 

and at the end of cycle. 

7. Calculation of elastic frictional forces generating 

in the connection "shaft-bushing"

In the resonant vibrating machines, including those with a torsional elastic frame, an 

accurate determination of the vibration amplitude of the working member by calculation 

is possible only if losses in the design are known. All attachment fittings of the torsion 

bars are the conventionally fixed joints of the “shaft-bushing” type, loaded 

simultaneously with torque and bending moments, as well as with radial and axial forces.

At vibrations, the elastic elements of the frame are subjected to torsion and bending 

both in the direction of the acting force and in the plane of the frame; these deformities 

cause energy dissipation in the fixturing. In addition, along with longitudinal (main) 

vibrations, the machine can also perform transverse (lateral) and rotary vibrations, which 

are connected, mostly, with flexural deformation of the torsion bar. It is practically 

impossible to determine experimentally the structural damping coefficient separately for 

the corresponding vibrations in a real machine. Therefore, it is advisable to determine 

them theoretically when considering the geometric scheme of pinching of the torsion bar, 

which is affected by moments and forces, simultaneously.

This approach is also advisable due to the fact that the structural damping coefficient 

and the nonlinearity of the elastic system are interconnected, and both are caused by 

imperfection in the articulated parts. With an increase in loading, a gradual slippage 

occurs in the pinched places, as a result of which the rigidity of the system decreases and 

dissipative forces appear, causing energy dissipation during vibrations.

These issues have not yet been sufficiently studied for a connection in which the 

contact of the mating surfaces is carried out along a smooth non-circular surface that is, 

in a wedge-shaped elastic-frictional connection loaded simultaneously with torsional and 

flexural moments. At the same time, for the theoretical study of these systems, it is 

desirable to have, in addition to the numerical value of the damping coefficient, also the 

functional dependences showing the relationship between the vibration amplitude both 

with the damping coefficient and with the rigidity of the torsional elastic system.
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8. Determination of dissipative forces under torsion and bending

Figure II.7 illustrates geometry of the clamped part of the torsion bar to determine the 

structural damping coefficient [12].

The bushing virtually is not subject to torsional deformation due to its large 

transverse dimension in relation to the torsion bar diameter (for example, usually for such 

connections of the bushing with the shaft, the ratio of their moments of inertia during 

torsion is I�/I�-15).

As Figure. II.7 shows, the pressure �, caused by the torque Mk has an uneven effect 

along the width of the torsion bar, that is, from the side of the rib, the pressure �

decomposes into the normal &n and shear &t stresses, while in the middle of the width of 

the side plane B, the pressure � causes only the shear stress &t. This is due to the fact that, 

in the plane of the cross section of the torsion bar, the distances from the points lying 

along the width of the side plane to the center O, are different in magnitude. 

Fig.II.7. The geometric conditions of the clamped part of the torsion bar for 

determining the structural damping coefficient of torsion under the combined

effect of the torsional and bending moments: a) forces acting on the clamped 

part of the torsion bar; b) the condition of equilibrium of the elementary

section of the torsion bar under torsion

The average value of the line pressure over the width of the side plane of the 

polygonal torsion bar caused by the torque is

                                                � =
�)�

��,-�
                                          (II.24)
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Where n. is the number of the side planes, 

 

B# =
.

&���&#/0	 �
��

- the arm of force at a 

point B/4.

Under the influence of the elastic linkages, normal and tangential stresses appear, 

which exert an uneven effect along the width of the side plane �, the values of which are 

respectively equal to:

&� = ����	;

                                                      &� = � �
�	;                                          (II.25)

where 	 = 2�x/Bn - is an angle between the torsion bar perpendicular to the side plane 

and the current value

0 # 	 # �/n.x – the current coordinate 0 # x # B/2.

After integrating the stress diagrams along x, we obtain the normal and tangential

forces that act on the side planes of the torsion bar:

�� = � �
�/�

�

cos �2��

&��
�%� =

��

��'1
��; 

                                    P/ = � �
2/�

�
sin ���3

.4�
�dx =

5	

4�6�
M5,                            (II.26)

where k� =
4�

�
�1� cos

�

4�
�; k� =

4�

�
sin

�

4�
are the constant coefficients obtained when 

performing the integration. 

The static moment of the diagram of normal stresses relative to the ribs of the torsion 

bar was determined as follows:

                           (� = � �%� = � ��sin ����
,��
�%� = ��

,/�

�

 

7
�&�,

                         � =
&�,

�
= �� ,                                                                        (II.27)

where k� =
4�

&�
�4�
�

sin
�

4�
� cos

�

4�
�,- is a constant coefficient obtained when performing 

the integration.

It should be noted that the obtained static moment is a moment caused by the normal 

stresses, which can also be determined through the normal force Pn.

                Mn = Pn rc = Sy                                                                                                         (II.28)

85 
 



where �1 =
8�

��
=
���,

&
is the arm of a normal force Pn applied to the center of gravity of 

the diagram of the normal stresses &n.

The torque associated with the frictional forces is

                          Mt = pt .R,                                                                      (II.29)

where  ' =
,

�
�)�

�

��
is the arm of frictional forces (the minimum distance from the 

center O to the side plane).

And finally, for the n.-facetted torsion bar, we obtain the following expression: 

�� = 2
��

-�
&�� = �&&��;

                                                  �� = 2
�	-

-�
�� = ����;                               (II.30)

                                                        Mk = Mn + Mt

Table II.2 shows the values of the coefficients k1 % k5 for the multifaceted torsion bar, 

taking into account the number of ribs and the values of R and Rc for different �� while 

keeping the width B of the side plane unchanged. Therefore, with increasing n', the radius 

r of the circumscribed circle increases. If an increase in the number of the side planes 

occurs due to a decrease in the width B while keeping the diameter of the circumscribed 

circle unchanged, then R and Rc tend to r&�'�(�����)������&*-type uncertainty results in

                     
lim

n� �
R = lim

�9%:4
�

��

�
ctg

�

4�
= r .                                            (II.31)

From table II.2 it can be seen that ��� n - 8, the elastic-frictional connection of the 

multifaceted torsion bar practically turns out to be a frictional connection.

Table II.2

Number 

of side 

planes n'

k1 k2 k3 k4 k5 Kc.B R.B

3 0.477 0.827 0.078 0.409 0.625 0.381 0.289

4 0.373 0.901 0.615 0.22 0.809 0.558 0.5

5 0.304 0.935 0.051 0.135 0.879 0.732 0.688

6 0.256 0.955 0.042 0.094 0.917 0.901 0.866
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8 0.194 0.975 0.032 0.052 0.955 1.233 1.207

� 0 1 0 0 1 � �

The rotational displacement (slippage) in an elastic-frictional connection is possible 

only under deformation of the elastic joints. Based on the geometrical considerations 

(Figure II.8), the relationship between linear compression and the torsion angle of the 

torsion bar in the pinched places is expressed by the following relationship:

                               *
 = (
+ + +�)cos (
�

��
� �

�
) (II.32)

After the value substitution 

     ao = R =
.

�
ctg

�

4�
; ob =

.

�
sin

�

4�
;          br =

�;

#$% (
�

��
 ��)

,                       (II.33)

In (II.33) and after some transformations we obtain

            �h =
.

�%:4
�

�

cos � �
4�
� �

5
�� .

�
ctg

�

4�
                                                            (II.34)

Fig. II.8. Deformation pattern of the clamped part of the torsion bar  

Let us write (2.34) as a Maclaurin power series with respect to the variable �k.

                   h = B[0.5�
5
� 0.25ctg � �

4�
��

5
� � �

��
�
5
� … ]                               (II.35)

Due to the fact that the torsion angle �k in the fixturing is small, henceforth, the 

variable quantities higher than the first degree are not taken into account and finally

                           �, = 0.5&�
�
.                                                   (II.36)
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The magnitude of the reaction of the elastic joints of the clamped part of the torsion 

bar is equal to the normal force Pn.

                     P4 = 0.5���5*���,                                                                (II.37)

where *� is the length of the slip region of the clamped part of the torsion bar, ck[!/	] -

the rigidity coefficient of the elastic joints, taking into account the pliancy of the 

fastening bolts.

As a result of a serial connection in the clamping unit of the bushing, torsion bar and 

fastening bolts, the total torsional clamping rigidity will be equal to:

             
�

1�
=

�

1�
+

�

1'
+

�

1&
;                                                                         (II.38)

where "T, "B and "& are the compressive rigidities of the torsion bar and bushings, and 

the tensile rigidity of bolts, respectively.

After the substitution of the corresponding rigidities for (II.38), we obtain

                        �� =  
�((�,

�-(��-����
�(

,                                                              (II.39)

where 0.5 # is the width of the contact surface of the mating, Rb- the bushing width ��
� -

the bolt length; b1 - the fictitious parameter of the cross-section of the bolts, determined 

from the condition of equality of the total sectional area of the bolts F=b1l1 (l1 is the 

pinch length of the torsion bar).

The frictional force from the action of normal force is


� = 0.5$���5*���,                                                               (II.40)

where f is coefficient of friction.

The magnitude of the frictional force from compression acting on one side plane 

equals

                        
1	 = $�
�
&*��
�
	 ,                                                         (II.41)
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where =1, 2, . . . . n. is the number of the side plane, 
i - an angle between the 

perpendicular to the compression force Po and the appropriate i side plane; �
$


��/

� ��&�
���

	
� 

:

– the value of specific pressure  exerted on the side planes of the torsion 

bar.

For the n'-faceted torsion bar, the Tc value is:

                     
1 =
+��<�

��
                                                                                  (II.42)

The frictional force from flexural moment is:

                      
= = $�=-=�,                                                                            (II.43)

where Qu is the slippage length from flexural moment, Y - the torsion bar flexing, cu

[N/m] - the coefficient of pinching rigidity under bending, which is determined similarly 

to (II.38), (II.39).

                  �= =  
�(�(

�-(��-�(���(
,                                                                      (II.44)

According to Figure II.8, the equation of moment scattering relative to the axis of the 

torsion bar X-X has the form

          �� = 0.5���5*��� � (
� + 
1 + 
=)' � ���� � .=���� = 0,         (II.45)

where zo - is the arm of forces.

Figure II.9 illustrates geometry of the clamped part of the torsion bar to determine the 

structural damping coefficient of bending under the combined action of flexural and 

torsional moments.

The elastic force caused by the moment Mu, is 

Pu=Cu	uy.                                                                                     (II.45a)

The frictional moment from the bending force is

               #= = $� �=	='�	�,�
	
�                                                                (II.46)
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where Roi is the arm of force acting on the i side plane, determined according to Figure 

II.9.

Fig.II.9. The geometric conditions of the clamped part of the torsion bar for determining 

the structural damping coefficient of bending under the combined effect of the torsional 

and bending moments: a) forces acting on the clamped part of the torsion bar; b) the 

condition of equilibrium of the elementary section of the torsion bar under bending

The frictional force from the action of compression force is

              #= = $�
��	


�

�
	
� '�	 .                                                              (II.47)

The frictional force from torsion 

                  # = 0.5$�5*���.                                                                (II.48)

The shearing force of the clamped part of the torsion bar (Fig. II.3b) caused by 

flexural moment is balanced by the elastic and frictional forces acting in the direction of 

flexing. Thus, the equation of equilibrium of moments relative to the point O for bending 

(Figure 4.3) has the form:

               - = �=�*= + (
� + 
1 + 
=)�
�

	
                                     (II.49)

The equation of equilibrium of moments relative to a point O for bending (Fig.4.3) 

has the form:

                 �= � -�� �#1 + #= + #� = 0.                                         (II.50)

Due to the fact that the torsion angle �k of the torsion bar in the fixturing is small, the 

pressure from the compression and bending forces Tc, Tu are practically unchanged. This 
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assumption allows to believe that the displacement of the corresponding resultant relative 

to the point o (Fig. II.1) is equal to zero. Due to the smallness of y, the frictional moment 

from the force Tu is also very small compared with the moment from the force Tc. Also, 

the frictional forces Tn and Tu from Figure II.3 turn out to be much smaller in comparison 

with the magnitude of the force Tc. Thus, the equations (II.22), (II.28) are simplified and 

take the form [12]:

                      �� � 0.5���5���� � 
�' + 
1' = 0;

            �= � �=��
�� � $� �=��'�	� � $

����

��
'�	 = 0.�

	
�                           (II.51)

9. Determination of the structural damping coefficient

using the polygonal hysteresis loop

In the case when the diameter of the torsion bar is much greater than the pinching 

length (d/l1>5), or the compression force is small (Po/q<I/2.5), the fixturing of a part of 

the torsion bar, in order to simplify the calculation, is considered to be an absolutely rigid 

in torsion and bending. Taking into account the above, it can be assumed that the 

slippage of all parts of the torsion bar along the length of fixturing begins simultaneously 

[12].

The equations for constructing the hysteresis loop separately for torsion and bending 

are as follows:

	M5 = A�l��5/B�l��5/q�l�

                                         	M> = A�l�y/B�l�y/q�l� ,                             (II.52)

where Ai(I = 1, 2) is a coefficient that takes account of the intensity of the reaction of the 

elastic joints; Bi is a coefficient that takes into account the friction forces of the elastic 

joints, 	 is a variable dimensionless load parameter, which, under a symmetric load, 

varies within –1 # 	 # 1, qi - the limiting friction moment per unit of the fixturing length 

from the force Po.. The / sign in (II.52) is taken depending on loading or unloading.

The hysteresis loops constructed using the equations (II.52) have the polygonal 

shapes (Fig. II.10).
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Fig.II.10 The polygonal hysteresis loops: a) $
���
������� �����

�����������: �) – triangular; b) trapezoidal  

In the complete absence of qi, the kinematic connections of the fixturing are not 

violated due to the presence of the elastic joints. Owing to the coefficient Bi, the 

hysteresis loops have the triangular shapes (Fig. II.10a), in the presence of q, the 

hysteresis loops have the trapezoidal (polygonal) shapes (Fig. II.10b). The angle of 

inclination of the section cd to the ordinate depends on the fixturing geometry and the 

value of the friction coefficient.

When qi, is completely absent, or when it is small, the rigidity of the system 

decreases significantly. A small variation in the magnitude of qi significantly affects the 

system’s rigidity.

The structural damping coefficients are equal to the ratio of the areas of the torsional 

or bending hysteresis loops to the areas corresponding to the potential energies of the 

system [13]

�
�

=
?�

@��8
�
;

                                                  �
=

=
?


@
�8


;                                         (II.53)

where Sk, Su – areas corresponding to the torsional and bending hysteresis loops;  Vk, Vu -

areas corresponding to the potential energies of torsion and bending under deformations 

of the unrestrained parts of the torsion bar; Svk, Svu - areas corresponding to the potential 

energies of torsion and bending under deformations of the clamped parts of the torsion 

bar,

The obtained coefficients �k and �u express the energy dissipation of independent 

torsional and bending vibrations of the vibratory exciter.

The determination of the aggregate damping coefficient in the presence of combined 

transverse and longitudinal vibrations, taking into account �k and �u, is described in 

detail in [14].

Let us consider vibrations with a small amplitude, when only longitudinal vibrations 

practically take place in the torsional vibratory exciter. According to expression (II.5), 
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the longitudinal displacement of AM relative to RM is caused by joint torsion and 

bending of the torsional elastic frame. The total potential energy based on (II.5) and (II.6) 

is equal to:

           � =
�

�
"���

�
=
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�
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+
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� ��

�7�
+
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),                                 (II.54)

where ��
� = 2� 3�� + 2��

�;     ��
� = ��

� + 2��
�;     ��

� = (1� ��).

According to (II.54), the total potential energy of the torsional elastic frame can be 

represented as the sum of two quantities:

Potential energy under torsion

                �� =
�	

�
[
��!

	�

���
+
��
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����
]                                                                (II.55)

and potential energy under bending
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Since in this case only longitudinal displacements are considered, the individual 

structural damping coefficients under torsion �ko and under bending �uo are equal to the 

ratio of the corresponding areas of work of the dissipative restraint forces to the area of 

total potential energy of the system; 
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.                                                         (II.57)

Figure II.11 shows the graphs of variance in torsional damping, obtained using the 

equations (58) and plotted in the coordinates of the double amplitude of vibrations 2�, q

= (0 % 7000)N, Gik = 33.10
3

N.m
2
, EI = 42.10

3
N.m, Mu = 400 N.m, r = 25.10

2
m. In the 

presence of asymmetric vibrations (asymmetric movement), the hysteresis loop also has 

an asymmetric shape.
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Fig.II.11. The graphs of variance in the 

dependence of the design damping 

coefficients on the compressive force, 

obtained by using the polygonal loops: 1 

– of torsion; 2 – common; 3 – of 

bending.

Fig.II.12. The hysteresis loop created by 

two curves under torsion of the torsion 

bar  

The aggregate structural damping coefficient of the torsional vibratory exciter at 

longitudinal displacement is equal to the ratio of the total work of the frictional forces of 

torsion and bending S (of the hysteresis loop) to the area of the total potential energy of 

the system;

                     � =
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@�8
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;                                               (II.58)
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10. Determination of the slip length and structural damping 

coefficient using the differential equations of the hysteresis loop

In cases when the clamping length is of the same order of magnitude as a diameter of 

the torsion bar or exceeds it in the presence of a large limit moment of friction qi, the 

structural damping coefficients obtained from the equation (II.52) are inaccurate. In this 

case, the assumption that the slippage of the torsion bar along the entire clamping length 

begins simultaneously, does not correspond to reality, since in the area of the section l1

(Fig. II.7), there is a gradual slippage of the clamped parts of the torsion bar relative to 

the bushing caused by the torsion of the torsion bar that generates the distributed 

dissipative forces [12].

When the lengths of the slip sections 	0�and�	u from the effect of Mk and Mu do not 

exceed the clamping length l1,, the individual branches of the hysteresis loop are 

constructed after solving the differential equations, for the derivation of which we 
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consider the equilibrium conditions for the torsion bar elements in the zone of its 

deformation (for torsion, see Fig. II .7b, for bending, see Fig. II.9b).

The equilibrium equations (II.51) for the elementary moments have the form as 

follows:

              
�)�

��
= (�� + &�)�

�
//�;                                                              (II.59)

                             
%�=

%�
= (�� + &�)�//�,

where /� = $��/��, /�� = $��/2��.

Differentiating the known expressions 

                           �� = � �%��/%�;

                   �= = ! %��/%��,                                                               (II.60)

by x, and replacing %��/%� and %���/%�� by � �%
��

�
/%�� and ! %&�/%�& in the 

equations (II.59), we’ll get the differential equations for constructing the hysteresis loops 

followed the curve lines  

              �
�
.. � 
��

�
= /

A�

���
;                                                                    (II.61)

              �
�
	B � �&� = /

A	

��
,                                                                       (II.62)

where 
� = (�� + &�)/� � , �& = (�� + &�)/! .

Solutions of the equations (4.39) and (4.40) can be written as follows:  
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= ��0
 
� + ��0

 
�/
A�

���
;                                                (II.63)

� = 0.51�(�,�� + �
���) + 0.51�(�,�� + �����) + 0.51�(�,�� � �
���) +

                    +0.51&(�,�� � �����)/
A	

����
.                                            (II.64)

To determine the unknown quantities in the expression (II.63), by means of which the 

hysteresis loops are constructed followed the curved lines (Fig. II.12), the following 

stage-by-stage boundary conditions must be observed taking into account loading and 

unloading [9, 11, 13, 15]; in this case, with a view to reducing the number of boundary 
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conditions, it is assumed that 
� = (

�

�
+ 


�

�
)/2. With a symmetrical load, the area of the 

hysteresis loop corresponding to the energy dissipated in one cycle is 
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                                                                                                                  (II.65)

m� = 1 + (2q�/
M5)�, " = �#� + 3.

Potential energy from the deformation of the clamped part of the torsion bar is 
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���(	 �
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(II.66)

where + =
A�


)�
.

At the low vibration amplitudes (up to about 1 mm), due to the absence of the 

transverse displacements, the structural damping coefficient can be determined according 

to the expression (II.53). Since the movement of masses in the torsional vibratory exciter

is mostly associated with torsional deformations of the frame, the difference between the 

structural damping coefficients �k and �ko is small. Figure II.13 shows the graph of 

variance in the structural torsional damping coefficient at coordinates Mk, �. (q1=10
4
H,

Mk= =3.7.10
2
H.m).

Fig.II.13. The graph of variance in the structural damping 

coefficient under torsion of the torsion bar 

It is known that as a result of bending, the upper layer of the beam is lengthened, and 

the lower layer is shortened. This results in the emergence of tensions 
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                                   & = �=
�

��
,                                                                    (II.67)

where  �    is the current distance from the layer being considered to the neutral one  

(Fig.II.14).

Fig.II.14. The geometric conditions for determining the 

structural damping coefficient under bending 

Integrating the equations (II.67) over the upper and lower cross-sectional areas from 

the neutral layer of the torsion bar, we generate the tensile force N1 of the upper half and 

the compressive force N2 of the lower half of the cross-section. These surface

displacements (deformations) are resisted by frictional forces acting in the fixturing, as a 

result of which energy dissipates during vibrations. In this case, there is no axial 

displacement of the torsion bar relative to the bushing, because the total normal force N,

caused by the rotational movements of the beam cross-sections under bending, is known 

to be zero under pure bending and is small under transverse bending [9].

Thus, in connection with the surfaces of the beam cross-sections under bending, the

surface compressive and tensile forces appear [1, 15], the values of which, with certain 

assumption for a hexagonal torsional bar, are

                     2� = 0.5&�
)


��
.                                                                      (II.68)

Finally, the simplified differential equation, by means of which the hysteresis loops 

for bending at a purely frictional connection of nodes are constructed, has the form:

                          3�� = ±
A�

�7
,                                                                        (II.69)

97 
 



where u – is the displacement of an arbitrary section in the direction of the tensile or 

compressive force, q3 = 0.5fPo/l1 is the ultimate friction force.

Thus, the structural damping coefficient under bending of the torsion bar can be 

determined approximately through the longitudinal deformations of the torsion in the 

fixturing caused by the surface tensile and compressive forces.

11. Determination of the lengths of slip zones and structural    

damping coefficients for purely frictional group connection

With the increasing number of the side planes of the torsion bar n � 8,, the elastic-

frictional connection under torsion approaches the purely frictional one (the coefficients 

A1 and B1 in the equation (II.61) become insignificant, and it can be set to 
 = 0). The 

picture is similar at sufficiently high q1 (- 2.10
4
H).

In view of the above, the equation (61) takes on the form;

                         �
�
��=±

A

���
,                                                                                 (II.70)

where Ip - is the polar moment of inertia of the torsion bar cross-section; q = fPoR/l1 - the 

limit frictional moment per unit length. The solution to the equation (70) has the form:

                          �
�

= ������ ±
A�	

����
,                                                               (II.71)

where the “+” sign is put at loading, and the “-” sign - at unloading. Depending on the 

stage loading and unloading, taking into account the boundary conditions [11, 12] and 

some transformations, we will obtain the equations for the slippage lengths and the 

torsion angle of the torsion bar in the fixturing:
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For a symmetric cycle with r = -1, the angle of torsion: �
��

=
 ���	�		

&A���
��
� .

The hysteresis loop for a purely-frictional connection is shown in Figure II.15.
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Fig. II.15. The hysteresis loops with a purely frictional

connection under torsion of the torsion bar 

At the symmetrical load, the area of the hysteresis loop of a purely frictional connection, 

corresponding to the energy dissipated in one cycle, is
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.                                         (II.73)

The potential energy of the deformed clamped part of the torsion bar under torsion is
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The damping coefficient for a purely frictional connection is determined similarly to 

an elastic-frictional connection, using (II.53), (II.57).

Figure II.16 illustrates the graph of variance of the structural damping coefficient under 

torsion of a purely frictional connection at coordinates Mk, q.

Fig. II.16. The graph of variance in the structural damping 

coefficient under torsion of the purely frictional connection 

The obtained structural damping coefficients under torsion of the purely frictional or 

elastically frictional fixturing have almost the same values. This is because the elastic 

connections of the hexagonal torsion bar at relatively large q do not have a noticeable 

effect on the process of opening the clamped parts. It should also be noted that when 

expanding the torsional expressions of the torsion bar in the fixturing of an elastic-

frictional connection by �M in a Maclaurin power series up to the third term, we obtain 

the expressions of the purely frictional connections. Based on this, in order to simplify 
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the calculation, it is possible in some cases to consider the elastic-frictional connections 

as purely frictional (Table 2), and instead of the expression (II.65), (II.66), to use (II.73), 

(II. 74).

The solution to the differential equation (2.69), which determines the work of 

dissipative forces under bending, is mathematically described similarly to (II.70) [11]. 

The expressions used to construct the hysteresis loops under bending deformation (Fig. 

II.17), in accordance with the stages of loading and unloading of a symmetrical cycle, are 

as follows:
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&�����
�=
� .        (II.75)

Fig.II.17. The hysteresis loop under bending of the torsion bar  

The area of the work of the frictional forces and the potential energy from deformation of 

the clamped part of the torsion bar under bending are respectively equal to:

                   (= =
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�.�����
. (== =
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�.�����
                                                          (II.76)

The structural damping coefficients under bending �u, and �uo are determined using the 

expression (II.53), (II.57). Figure II.18 illustrates the graph of variance of the structural 

damping coefficient under torsion of the torsion bar at coordinates Mu, q.

Fig. II.18. The graph of variance in the structural damping

coefficient under bending of the torsion bar   
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Taking into account the potential torsional energy Uk of the torsion frame, in 

contrast to the coefficients �u and �uo, makes a great difference between �u and �uo. This 

is due to the fact that 

the main longitudinal movement of masses and the corresponding potential energy 

of the torsional vibratory exciter are associated with the torsion of the elastic frame. 

12. Determination of the non-linear rigidity of the elastic system

associated with slippage in the fixturing points of the torsion bar

In paragraph II.4, it was noted that the system’s rigidity, determined without taking 

into account the pliancies of the fixturings, using the expression (II.15), is in error.

No matter how perfect the termination is, with increasing loading, its elasticity 

allows the built-in end of the torsion bar to obtain linear and angular displacements. The 

effect of the built-in end is especially significant for the relatively short torsion bars [16, 

17], without taking into account the slip length 	k in the fixturing, at a given vibration 

amplitude of 10
-3

m, the natural frequency of the system is 5-7 Hz lower. 

To specify the natural frequency and the system’s overall rigidity, a certain length �l 

from the place of the built-in end is added to the free length l of the elastic element [8]. 

                             l�� = � + 0.5�� + 0.25��,                                                      (II.77)

where l2–is the length of the fixturing of the torsion bar with the lever, l3– is the length of 

the fixturing of the torsion bar with AM or RM.

In the torsional vibratory exciters, usually l3 1 l2.

Formula (II.77), specifying the design frequency, nevertheless does not give a true 

picture of the dependence of the frequency on the vibration amplitude, and, therefore, 

cannot explain the origin of the soft characteristic of the elastic system. Formula (II.77) 

also does not take into account the magnitude of the compression force, the diameter, 

length and geometry of the clamped part of the torsion bar, as well as the magnitude of 

torsional moment.

Due to the fact that the connection between the bushing and the torsion bar is 

imperfect, the reaction of the moment acting between the bushing and the torsion bar is 

expressed as the sum of the moment arising from deformation and from the frictional 

bonds [18]. Based on this, the total value of the torsional angle of the torsion elastic 

system, with account for the fixturing, is
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�

+ �
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,                                                        (II.78)

where �
�

is a torsional angle of the torsion bar in the presence of imperfect 

connection, �
��

– a torsional angle of the clamped part of the torsion bar.

Taking into account (II.72), the equation (II.77) after some transformations takes on 

the form:

                                 �(�) = �� � 	)�	�A�
,                                                        (II.79)

where M(�)  is the aggregate elastic-frictional moment,

Mk – the moment acting on the torsion bar.

Since the traction force of the electromagnet is much less than the inertial loads, 

during the dynamic study of the vibratory exciter in the expressions for determining the 

twisting angle of the free and clamped part of the torsion bar, the AM displacement

relative to the RM, the rigidity of the elastic system, structural damping coefficients and 

other characteristics, it is necessary to replace the static force by the dynamic one. To this 

end, we use the well-known expressions, by means of which we define the single-

frequency inertial loads, which we use to determine the single-frequency inertial loads 

(dynamic forces) depending on the value of the twisting angle �� =  ��� , where 

�� = ��� - is the angular acceleration, from which

                �(�) =  ��
��� ��

	 ��

�A�
����.                                                     (II.81)

Taking into account (II.79), the expression (II.78) takes on the form as follows:

               �(�) =  ��
��� ��

	 ��

�A�
����.                                                      (II.82)

Using the well-known expression � � = �/� [9], we find the rigidity of the torsional 

elastic system taking into account slippage in in the fixturing, which is a function of the 

vibration amplitude:

            �� =
���

�
� ��
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�A�
	��.                                                                      (II.83)
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13. Analysis of structural damping characteristics

It should be noted that the similar expression can be obtained by increasing the free 

length of the torsion bar by the amount of slip, using (II.72).

Similarly, we obtain the expressions for the rigidities, which are the functions of the 

vibration amplitude for the following loading steps:

       �� =
���

�
� ��

	 ��
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��
	 ��

&A�
	��.                                            (II.83)

Figure II.19 illustrates curves of the total rigidity of the elastic system, depending on the 

magnitude of the vibration amplitude; they are the non-linear functions of the 

displacements. When determining the rigidity (II.79), the value of the torsional angle �k

of the torsion bar in the place of the fixturing must be doubled, because the torsion bar is 

clamped at both ends. Curve q = 0 corresponds to the system’s rigidity without taking 

into account the pliancy of the fixturing in the presence of different values of the 

compressive forces.

Fig. II.19. The dependence of the system’s rigidity on variation in the magnitude 

of the vibration amplitude under the effect of different compressive forces

Thus, taking into account the slippage of the torsion bar in the fixturing in the 

expressions for the rigidity of the elastic system (II.81) and (II.82) leads to a nonlinear 

system with a soft characteristic of rigidity, which is in good agreement with the

experiment.

The equations used to construct the individual sections of the hysteresis loop were 

obtained in the proposal that the friction forces are independent of the strain rate; they are 

valid for the low rates of velocity variation of loads acting on the torsion bar. However, 
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the obtained damping coefficient can be used at higher strain rates, since it practically is a 

little dependent on the vibration frequency [11, 19, 20, 21].

Figure II.20 illustrates the values of the structural damping coefficients, depending on 

the vibration amplitudes under torsion �k, under bending �u and at the longitudinal 

displacement, taking into account the bending and torsional deformation �. As Figure 

shows, the damping coefficients are the non-linear functions of the vibration amplitude. 

Fig.II.20. The dependence of the damping coefficients of torsion, bending 

and common one on the magnitudes of the vibration amplitude  

Certain discrepancy between the theoretical and experimental (dashed line) values of 

the damping coefficients is due to the fact that in the dynamic modes, the energy 

dissipation occurs both due to the structural hysteresis and as a result of internal friction 

at the interval of aerodynamic resistances. However, this difference is small and can be

neglected.

Figure II.21 illustrates the graph of variance in the structural damping coefficient 

under torsion, depending on change in the magnitude of the force clamping the torsion 

bar. In the absence of q1, in view of the presence of the coefficients A1 2 0 and B1 2 0 in 

the equation (II.52), the energy dissipation takes place; with the increasing q1, the 

damping coefficient increases to a certain maximum; the subsequent increase in q1 causes 

a decrease in the damping coefficient, but further it is necessary to use the equation 

(II.61) instead of (II.52). The dotted curve corresponds to the purely frictional connection 

(II.70) and shows that at q1 - 3.10
4
H, the damping coefficients of the elastic-frictional 

and purely frictional connections are the same, while at 7.10
3
H # q1 #8.10

3
H, the 

discrepancy between them reaches a noticeable value, and with further decrease in q1,

there are no kinematic joints in the purely frictional connections, and the torsion bar 

rotates in in the fixturing, while with an elastic-frictional connection, the fixturing of the 

torsion bar is not violated, despite a noticeable decrease in the system’s rigidity.
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Fig.II.21. The structural damping coefficient under torsion 

depending on the value of compressive force 

The structural damping coefficient for the purely frictional clamping of the torsion 

bar, taking into account (II.73), (II.74), is

                        �
�

=
�"�)�

�A���"�)�
.                                                            (II.84)

In some cases, when calculating the structural damping coefficient, one can ignore 

the energy Suk according to the formula (II.74), since it is much less than the potential 

energy of the entire elastic system (II.54), for example, Uk/Suk = 25. Based on this, we 

obtain a simple expression that can be used to pre-determine the structural damping 

coefficient:   

                 �
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=
�"�

�A�
��.                                                                           (II.85)

The expression (II.84) with account for (II.80), has the form as follows:  

                  �
�

=
�"����

	

�A�
�,                                                                       (II.85)

14. Mathematical modeling of the electromagnetic vibrators

In programming with a mathematical model of an electromagnetic vibrator, some 

difficulties and unpredictable consequences appear. Unlike other vibratory exciters, 

which are excited by harmonic forces, the electromagnetic vibrators are mathematically 

described by two equations: the equation (II.86) describes the mechanical oscillatory 

process with an exciting force having a quadratic degree, and the equation (II.87) 

describes an electromagnetic circuit, in which an electromagnetic flux (force) is formed 

[24, 26, 26].
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                        �� + 2,�� + ���� = *��                                                                 (II.86)

                      �� = + sin(�)) � %(�� �)�                                                  (II.87)

where 2h, a, b, d are the coefficients of proportionality, respectively, of dissipative 

forces, exciting forces, electric intensity, magnetic permeability; �0 – a natural circular 

frequency of the vibrator; � - the initial air-gap clearance; � - the magnetic flux, x - the 

vibration amplitude of the mechanical system. 

Figure II.22 illustrates oscillograms of a single-stroke electromagnetic vibrator with 

an exciting force sin�t. Oscillatory process of readings in Figure II.22a corresponds to 

the power supply of the vibrator with a frequency of 50 Hz, and Figure II.22b shows 

oscillogram of the vibrational process of the vibrator with a frequency of 25 Hz. We can 

say that the transient processes in both modes are far from reality [27]. The amplitudes of 

mechanical vibrations at the beginning of the vibrator starting increase sharply, and then 

gradually decrease or stabilize. As for the magnetic fluxes, they are initially completely 

displaced from the zero axes, and then gradually cross the zero axis, while the vibration 

amplitude of the exciting force does remains unchanged.   

Fig.II.22a. Oscillograms of the 

transient process with a 

frequency of 50 Hz.

Fig.II.22b. Oscillograms of the 

transient process with a

frequency of 25 Hz.

The electromagnetic vibrators based on the principle of excitations are single-stroke 

(single-gap) and two-stroke (two-gap) [27, 28]. In the two-stroke vibratory exciters, 

depending on the half-periods, the traction force is realized from one or another side of 

the gap clearance, and thus the excitation frequency of the vibrator corresponds to the 

frequency of the industrial electric power network. The design of the single-stroke 

vibratory exciters is the simplest and most reliable in operation, however, the disturbing 

frequency of these vibratory exciters is doubled in comparison with the frequency of the 

industrial electric power network, since the electromagnet generates the force of 

attraction in both periods of alternating current. To halve the disturbing frequency of 

these vibrators, semiconductor diode is connected to the power circuit [22].
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In the scientific literature (existing on the Internet and available in libraries), the 

mathematical description of the action of a semiconductor diode in the supply circuit of 

the electromagnetic vibrators is rather scarce and in principle is untrue.  

The assumption that at a half-period rectification of the alternating electric current, 

the cut-off half-periods in the equation (II.87) are equal to zero, that is the term bsin(�t) 

is set equal to zero is not true. This approach in mathematical modeling causes a gradual 

accumulation of magnetic flux in the system, which is equivalent to the one-sided 

deflection of the elastic system of the vibrator (Fig. II.23a). Some researchers, in order to 

overcome the gradual increase in the exciting force and the one-sided deflection of the 

elastic system, unreasonably increase magnetoresistance coefficient or dissipation of the 

magnetic flux, that is, if the power consumption is too high, they artificially reduce the 

tractive force of the electromagnet. Figure II.23b shows the oscillatory process with the 

unreasonably increased power consumption, which does not correspond with 

experimental results. 

Fig.II.23a. Oscillogram in the 

nulling of  sin�t

Fig.II.23b. Oscillograms of vibration of 

the vibrator during the large dispersion 

of the magnetic flux  

To clarify this problem, we will analytically solve the equation (II.87), provided that 

the vibrations of the air-gap clearance are so small as to be negligible [29]. In this case, 

the analytical solution of the equation (II.87) can be represented as a product of two 

functions � = u(t)�v(t)  [25], where one of them is given arbitrarily, and the other one is 

determined based on the equation (II.87).

                    � = +
1�?	��� �1�?��

(1�)	��	
+ .�0

 1��                                             (II.88)

According to the initial conditions t = 0, � = 0, the coefficient C1 will equal
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After the substitution of (II.89) for (II.88), we get the magnetic flux in the 

electromagnet core 
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                                        (II.90)

The analysis of the equations (II.88) shows [29,30] that when the electromagnet is 

supplied with direct current �=0, that is bsin�t = u0, the magnetic flux will equal � = 

u0/�, while the force of attraction of the magnet is F = a�2
. For � 2 0 and � = 0, we 

obtain

               � =
(

�
�  

(

�
�
��)                                                                      (II.91)

The first term of the equations (II.90) and (II.91) disappears, and the second term 

remains and is responsible for the vibrating process. Based on the equations (II.91), it can 

be seen that the magnetic flux in the supply circuit of the magnet coil strongly depends 

on the frequency of the supply current.

With half-periodic inherent rectification, the term b�sin�t in the equation (II.87) 

exists only in the positive half-periods, but in the negative half-periods, this term 

becomes zero, which means that it is absent and the equation (II.87) takes on the form

                �� = ����                                                                               (II.92)

from which

                  � = ��0
 1��                                                                         (II.93)

For the initial conditions t = 0, � = �0, the analytical solution of the equation (II.93) 

has the form

               � = ��0
 1��                                                                            (II.94)

It is easily seen that exponential decay � occurs over an extremely long period of 

time and does not at all reflect the real disappearance of the magnetic flux.

Indeed, when t = 0, 01 s, which corresponds to a half-period of 50 Hz, � will not 

disappear to nothing. If t = 0, the magnetic flux is equal to � = �0 = 1, then for t = 0,01, 

� becomes equal to � = 0.99005. As a result, after n cycles, according to (II.87), the 

massive energy of the false magnetic flux � is accumulating, which cannot be explained 

in any way in terms of electrical engineering [29, 30, 31]. The inadmissibility of 
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replacing the equation (II.87) by the equation (II.92) is also seen from considering the 

balance of voltages in the power circuit.

           �� = 3�����) + 4�� ,                                                                    (II.95)

Where u - is the voltage amplitude; r - active resistance; W - the number of the turns 

of the coil.

In accordance with the equation (II.95) after the termination of the voltage u�sin�t,

the electric current i, the magnetic flux � and the inductive reactance W d� / dt (Ldi / dt)

of the electric circuit (where L is the inductance) cannot exist [28, 29]. The absence of the 

term u�sin�t in the equation (II.95) results in the equation

               �� =
!	

'
                                                                              (II.96)

According to the equation (II.96), when the alternating current voltage stops, the 

electric current i in the circuit may exist only during the disappearance period of �.

Otherwise, (95) loses its significance as an equation for describing the electromagnetic 

circuit. 

Based on the aforementioned study, in the negative AC half-periods, that is, during 

the periods when the current is closed by the diode, the equation (II.87) should be 

replaced by the equation describing the magnetic flux damping. To simplify the 

calculation, taking into account a tolerance for the negligible error in the negative half-

periods, it is possible to set � to zero, which is equivalent to the action of a 

semiconductor diode at negative voltage [30].

when   sin(�)) < 0        then � = 0                                                                 (II.97)

When describing the action of a semiconductor diode in a mathematical model, it 

should be borne in mind that a semiconductor diode does not cut off the so-called 

negative peaks of an AC voltage; it cuts off the negative AC peaks [30]. Based on this, 

when using the Runge Kutta software, it is necessary to set to zero not the operator y[i], 

which forms the magnetic flux �, but the operator w[i], which, at the end of the cycle, is 

equated to y[i] and transfers the values to the beginning of the cycle. Figure II.24a shows 

the corresponding oscillogram. By the time when the vibrator is disconnected, the 

operator w [i] must also be set to zero, so as not to get a false long process of gradual 

magnetic flux depression (Fig. II.24b). 
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Fig.II.24a.  The process of 

magnetic flux accumulation in the 

nulling of operator y[i]

���.II.24�. The process of 

vibration damping when the vibrator is 

switched on without nulling  of 

operator w[i]

Taking into account the above adjustments, we get the oscillatory process of the 

electromagnetic vibratory exciter with the half-period inherent rectifications, which is in 

good agreement with the results of experimental studies of a real electromagnetic 

vibratory exciter (Fig. II.25).

Figure II.25a illustrates the resonant oscillatory process with a frequency of 50 Hz 

with a disturbance of a half-period rectified current with a frequency of 50 Hz, and 

Figure II.8b shows an oscillatory process with a disturbance at a frequency of 25 Hz with 

the appearance of an insignificant subharmonic resonance. It should be noted that when 

the vibrator is driven by the half-periodic rectified current, the role of the phase shift of 

�/2 is no longer crucial. The oscillatory (vibrating) processes are the same both due to 

sin(�t-�/2) and sin(�t). The matter is that with a half-period of the rectified current, 

rectified asymmetric pulses make the system nonlinear with a soft characteristic and 

cause asymmetric vibrations of the elastic system.

Fig.II.25a. The main resonant mode 

with a half-periodic rectification  

Fig. II.25b. The subharmonic resonant 

mode with a half-periodic rectification 
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The expansion of the second term of the equation (II.88) into a power series on t has 

the form as follows [30]

            � =
(�

E�
�
��) +

(1���

E�
cos�) +

(1��	�	�

�E�
�
��) � ��� ,                    (II.98)

where 5� = (��)� + ��

Based on (II.88), it follows that the oscillatory process practically occurs due to cos�t

= sin(	 - �/2), that is the vibration amplitudes of the mechanical system lag behind the 

oscillatory process of the electric power network (exciting force) in phase with �/2.

It should be noted that the first terms of the equation (II.98) can also be obtained 

through analytical solution of the equation of forced vibrations

                �� + 2,�� + ���� = *�����),                                                       (II.99)

the analytical solution of which is

                 � = �0�� sin���) + �
�
	+ �(�) sin(�) + �),                              (II.100)

where �(�) =
<

��(��
	  �	)	�<	�	

The substitution of the analytical solution for the equation (II.87) and expansion of 

the resulting equation in a power series and its subsequent integration, also result in a 

power equation, the first terms of which coincide with the equation (98). Based on a 

comparison of the equations (II.87), (II.98) and (II.100), it is also proved that the 

magnetic flux and the alternating electric current circulate in accordance with sin(�t -

�/2) =cos�t and lag in angle �/2 behind the supply voltage b�sin�t. Squaring of the 

equation (II.15) gives a simulating harmonic exciting force of the electromagnetic 

vibrator [30].

            3� =
(	�	

E�
	 �
���) + 2

(	�	1��

E�
� �
���) + ���                                     (II.101)

On the basis of research, in a number of cases, it becomes possible to replace the 

system of differential equations (II.86) and (II.87) by one differential equation without 

particular errors, in the right-hand side of which there is only one main term of the 

equation (II.101) that simulates a nonlinear exciting magnetic force [30]. With this 
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approach, the calculations are simplified and the above problems of the half-periodic 

inherent rectification and phase shift in mathematical simulation (modeling) disappear.

                   �� + 2,�� + ���� = *
(	�	

E�
	 �
���)                                                  (II.102)

Figure II.26 illustrates the modes of vibrational resonance of the electromagnetic 

vibrator obtained using the equation (II.102). Figure II.26a shows the oscillatory regime 

of a non-rectified exciting force with a frequency of 50 Hz, and Figure II.26b shows the 

same with a half-periodic inherent rectification with a frequency of 50 Hz.

Fig.II.26a. The resonant mode with 

excitation by the frequency of  50Hz

Fig.II.26b. The resonant mode with 

high-periodic rectified excitation by the 

frequency of  50Hz 

Figures illustrate that due to the absence of diode rectification, the disturbance 

frequency is doubled (instead of 50Hz, we actually have 100Hz), therefore, the 

oscillatory regime does not arise (Fig. II.26a), and in accordance with Figure II.26b, due 

to the half-periodic inherent rectification, the disturbance frequency is not doubled and, 

therefore, the resonance regime appears.

When the vibrator is excited by the non-rectified electric current with a disturbance 

frequency of 25 Hz, the resonance regime appears again, since in this case the frequency 

is doubled again and becomes the resonant frequency (Fig. II.27).

Fig.II.27. The resonant mode with 

harmonic excitation by the 

frequency of  25Hz 

Fig. II.28. The transient frequency mode 

from 52 Hz to 52 Hz. a) without 

adjustment; b) with adjustment. 
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The oscillatory processes obtained by model simulations using the equation (II.102) 

are almost indistinguishable from the oscillatory processes obtained by model 

simulations in accordance with the system of the equations (II.86) and (II.87) and the 

experimental studies of the electromagnetic vibratory exciters. It should be noted that the 

simulated magnetic flux � based on the equations (II.102), is not formed by integrating 

sin�, and therefore it is symmetrical about the zero axis. Therefore, in the last figures, the 

magnetic flux is presented in the form of the exciting force of the electromagnet through 

�2
, which changes in time according to the law of cos

2�t.

During digital modeling (the discrete increase or decrease in the excitation frequency) 

of the nonlinear systems (for example, using the Runge-Kutta method) it is very difficult 

to obtain the amplitude-frequency characteristic (AFC) that would fully reflect the 

nonlinear dynamic properties of the system. Moreover, in some cases it is practically 

impossible. This is especially noticeable, when there are the low damping coefficients 3

< zero,1 [32, 33, 34]. To set the stable amplitudes in the nonlinear systems, which are 

described by formula (II.103), it takes too much time (oscillatory cycles), while when 

there are the low damping coefficients, a small spacing h < 0.1 is required in the 

disturbance frequency. In spite of this, however, there is no guarantee that the set 

amplitudes will not end up on the lower branches of the resonant mode. With discrete 

switching from one excitation frequency to another, there is a phase imbalance between 

the electromagnetic excitation and the potential (or kinetic) forces of the vibrator, which 

leads to instability of the mechanical vibration mode (Fig. II.28a).

             �� + 2,�� + ���(� + 4��) = *
(	�	

E�
	 �
���)                               (II.103)

When the excitation frequency changes discretely in a nonlinear system, the process 

of a sharp increase or decrease in the amplitudes of stationary vibrations occurs. For 

example, when in a nonlinear oscillatory system with a rigid characteristic (II.103), the 

vibration frequency increases, the peak of the resonance system shifts towards higher 

frequencies, while in the systems with a soft characteristic, the opposite is true. A sharp 

increase or decrease in the amplitudes of the transient process causes a bump up in the 

amplitudes on the lower stable branch of resonance, that is, the small vibration 

amplitudes are set.

This correction creates the condition for a stable transient process, and we obtain the 

AFC for the nonlinear systems even with a transition increment of 2–3 Hz.
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Based on the research carried out, a mathematical model was created for carrying out 

the numerical experiments (modeling) of the dynamics and dynamic stability of the 

nonlinear wide-range vibrators, including the electromagnetic vibrators.

Fig.II.29 The AFC (frequency response) of the harmonically excited, 

debalance-type, pneumatic, hydraulic and other vibrators with the

non-linear elastic systems having the rigid characteristic 

Figure II.29 shows the AFC (frequency response) of a harmonically excited nonlinear 

non-electromagnetic vibratory exciter with a rigid response in the frequency range of 

9%64 Hz, taking into account the above correction, while Figure II.30 shows the same, 

but without correction in accordance with the equation (104)

                �� + 2,�� + ���(� + 4��) = *�����)                                          (II.104)

As Figure II.30 shows, with an increment of 1 Hz, changing the frequency without 

correction, two stable branches typical of the nonlinear systems are not fixed during the 

numerical experiments.

Fig.II.30. The AFC (frequency response) of the harmonically excited 

vibrators with the non-linear elastic systems without adjustment
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.

It should be noted that in mathematical modeling of the nonlinear systems, it is 

desirable to use a floating-point number, otherwise in most cases, the influence of non-

linearities is lost, since when measuring in the SI system, we deal with too small 

numbers. For example, with an amplitude of vibrations � = (0,001 m)
3

= 0,000000001 m
3

= 10
-9

m
3
. It should also be noted here that in the equation (20), the non-linear effect of 

the air-gap clearance is expressed in the denominator in the thrust coefficient of the 

electromagnet, as described in [35].

Figure II.31 shows the AFC (frequency response) of the nonlinear electromagnetic 

vibratory exciter, excited by the half-periodically rectified current in the excitation 

section of 7%61 Hz, taking into account (II.103) and corrections. The magnitude of the 

amplitude of the exciting force is the same in all cases.

Comparison of the obtained AFC with the previous ones shows that the AFC of the 

electromagnetic vibrator differs from the previous non-electromagnetic vibrator in that 

the latter has several low-frequency multiple resonances, the so-called subharmonics, 

while in the previous AFC, the low-frequency multiple resonances are not visible.

Fig.II.31. The AFC (frequency response) of the vibrators with the non-linear elastic 

systems having the rigid characteristic excited with a half-periodic rectified current

.

Based on the comparison of the last two frequency characteristics (responses), it can 

be concluded that the half-periodic rectification of alternating current in the system 

causes the appearance of additional non-linear effects. With a tractive force of the 

electromagnet with a rectified half-period of the electric current, in addition to the main 

frequency, other frequencies appear, including the multiple frequencies, which under 

certain conditions can cause the corresponding resonant vibrations.
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Conclusions

A method has been developed to calculate the rigidity of a spatial torsional elastic 

frame that is subject to torsional and bending deformations, and it has been shown that 

75-85% of the relative displacement of the clamped parts of the torsion bar is performed 

due to the torsion of the torsion bar, and only 7-10% - due to the bending of the torsion 

bar and the lever, and the rest is due to the non-linear opening of the clamped part of the 

torsion bar.

Depending on the effect of the values of the torsional and bending moments, the 

opening of the clamped part of the torsion bar is investigated, which leads to a decrease 

in the rigidity of the elastic systems and contributes to the appearance of dissipative 

forces in the form of structural damping. The shapes of the hysteresis loops formed in the 

clamped parts due to torsional and bending vibrations have been obtained.

A mathematical model of the electromagnetic vibratory exciters has been created, and 

a broad mathematical experiment has been carried out to study the dynamics of the 

electromagnetic vibrators.

The results obtained using the created mathematical model based on the mathematical 

experiments are in good agreement with experimental studies, and it can be concluded 

that the created program for mathematical modeling of the electromagnetic vibratory 

exciters can be successfully used at the design stage of new electromagnetic vibratory 

exciters.
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PART III

THE LOW-FREQUENCY ELECTROMAGNETIC 

EXCITERS OF RESONANT VIBRATIONS

Introduction

At the present stage of the revolution in science and technology, special importance is 

attached to the development and broad application of means of integrated mechanization 

and automation. In automated systems that regulate technological processes occurring in 

mechanical and electric drives and other devices, the vibrating reciprocating machines 

are used to a great extent.

The principle of operation of the vibrating machines is based on generating vibrations 

that are excited and supported by inertial, piston-type, electromagnetic or other types of 

the exciters.

Areview of the literature [5, 6, 8, 10, 12, 16] indicates that in terms of the amplitude 

of the driving force per unit mass, the electromagnetic exciters are far belowthe inertial 

and hornet-typevibratory exciters. Nonetheless, the vibrating machines with an 

electromagnetic drive have earnedsustained and growing applications.The design and 

operational features of these machines allow them to be widely used in mining, 

metallurgical, construction, machine-building, instrument-making, chemical, food and 

other industries [1, 7, 11, 15]. Its good points include: simplicity of design, increased 

reliability and durability, the possibility of fluent regulation of the performance (without 

stopping the machine) at a strictly specified vibration frequency and practical 

noiselessness in operation. As a result of the absence of rotating and rubbing pairs, there 

is no need for periodic lubrication and replacement of worn parts, which significantly 

reduces the cost of machine operation.

A significant reduction in the dimensions and masses of the electromagnetic 

vibratoryexciters was achieved by using the resonant tuning of the elastic system. The 

latter leads to an increase in the sensitivity of the vibration amplitude in relation to 

changes in the supply current, which makes the electromagnetic vibratory exciter a very 

convenient object of automatic control.

1. The electromagnetic exciters of resonant vibrations

Practically all the modern electromagnetic vibrating machines operate in a near-

resonant tuning of the main mode [3, 4, 9], and the amplitude of the force developed by 
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the elastic suspension is 5-20 times higher than the amplitude of a driving 

electromagnetic force (the ratio of these forces is sometimes called the gainratio).

The electromagnetic vibrating machine consists of two, active and reactive masses, 

interconnected by means of the elastic system. The most commonly used elastic systems 

are in the form of sets of flat bow springs and helical springs; there are also the elastic 

elements in the form of the torsional frames, rubber washers and flexible shafts. The 

masses are fastened to the elastic elements by means of the binding bolts, or installed 

directly on the end coils of springs. The working member is attached to the active part of 

the exciter.

By method of power supply, the electromagnetic vibratory exciters are subdivided 

into the vibratory exciters with power supplywith: alternating current; rectified current; 

simultaneously alternating and direct current.

The low rigidity of the elastic elements provides great opportunities for fluent 

variation of resonance characteristics, such as an amplitude, natural frequency and 

damping coefficient in the nodes of the clamped ends of the elastic elements. In this case, 

the non-linear effects appear both in the elastic system and in the exciting forces.

The nonlinear properties of the elastic system and the exciting force can be used to 

generate sub- and superharmonic resonant vibrations without the use of special frequency 

converters. The exciting force in the electromagnetic vibratory exciters essentially 

depends on the size of the gap in the electromagnet, and besides is non-linear. The 

power-supply circuit of the electromagnets and tacticity of the exciter affects 

significantly this non-linearity.

Therefore, the oscillatory processes in the exciter with the given mass characteristics 

are, first of all, the processes of interaction of two non-linear factors: the elastic-frictional 

force and the force of electromagnetic excitation.

In a dynamical analysis of the vibrating machines, the rigidity of the elastic system is 

picked out from the condition of generating the resonance (near-resonance) vibrations at 

a given frequency of the exciting force.

The experimental and theoretical studies have shown that along with the main 

resonances of the system under certain conditions, due to non-linearity of the 

electromagnet, it is possible to generate the sub- and superharmonic resonance vibrations 

[4, 16, 17].

The use of these vibrations (especially subharmonic ones) in the vibratory exciters 

increases noticeably the capabilities of these machines in terms of both reducing the 

metal consumption of the elastic elements and reducing the inertial loads and the level of 

radiated noise.
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A review of the literature shows that the issue of regulating the amplitude of 

mechanical vibrations of the electromagnetic vibrating machines operating at low 

frequencies, for example, in a subharmonic resonance mode, has not been sufficiently 

studied. The dependence of the damping coefficient and the amplitude of mechanical 

vibrations on the constant component of the exciting force is also among the issues that 

have not sufficiently addressed.

2. Methods for the vibration frequency reduction

The basic requirement needed for the operation of the resonant vibrating machines is 

the correspondence of the natural frequency of the mechanical system with the disturbing 

frequency, the ratio of which at precise resonance tuning is 
0�
1 = 1. Proceeding from 

this, when considering the methods for reducing the vibration frequency of the working 

member, we shall assume that the natural frequency of the elastic system is pre-set to the 

excitation frequency.

In order to further reduce the frequency, various phase-shifting and pulse devices are 

often used to generate the frequency of mechanical vibrations equal to 
1/2 [13].   The 

exciters are also applied, in which the effect of the ferroresonance phenomenon is used. 

In this case, under certain conditions [13], for example, if the capacitance of condenser 

and the size of the air-gap clearance meet the conditions for the occurrence of voltage 

resonance, the so-called parametric resonance occurs and mechanical vibrations are 

generated with a frequency different from the excitation frequency. However, such a 

system is difficult to tune to resonance, it is sensitive to changes in parameters, and it 

works unstably, which limits its application.

A downside to these schemes is the need to use the additional frequency conversion 

devices, which ultimately reduces the overall reliability of the vibrating machine.

Reducing the vibration frequency of the working member, under certain conditions, 

can be carried out by using a new type of a non-linear subharmonic transducer [16]. Such 

a regime is realized under conditions when the excitation frequency is equal to 
1 and the 

natural vibration frequency of the elastic system is 
0 = 
1/2, and the vibrations of the 

order of 
0/
1 = 1/2 are excited. The main advantage of the subharmonic mode is the 

reduction in the frequency of mechanical vibrations of the vibrating machine without the 

use of the additional frequency converters, ease of maintenance and design reliability.

The increased interest in the problem of the frequency reduction is primarily due to 

the fact that the intensification of some technological processes is associated with the use 

of low-frequency mechanical vibrations, for example, for compacting the concrete 
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mixtures [1, 6], in the automated lines for oriented supply of parts [12, 15], etc. A 

decrease in the frequency of vibrations of the working member, naturally, reduces the 

speed of transporting material as many times as the frequency has decreased. Therefore, 

to maintain a constant speed of transportation of material, it is necessary to increase the 

amplitude of mechanical vibrations. For example, for the subharmonic mode (
0/
1 =

1/2), it is necessary to have the speed V = 2�mech*
1/2. The overall benefit in terms of 

vibration isolation lies primarily in halving the force of inertia 2Amech*(
1/2)
2

=

Amech*
1
2
/2.  Consequently, the load on the supporting structures is reduced by the same 

factor. In addition, the rigidity of the expensive elastic system decreases by 1/(
0/
1)
2
= 4 

times, and the noise of the machine also decreases. 

3. Special aspects of generating subharmonic vibrations

The mechanism for generating subharmonic vibrations in the electromagnetic 

vibratory exciters is well described in [16].

The main source of non-linearity in the electromagnetic exciter of vibrations is the 

electromagnetic force created in a variable gap clearance [4, 16, 17].

Based on the Maxwell's formula, the force developed by the electromagnet is equal to 

[2],

                                      �(�, )) =
,	8

���
                                                             (III.1)

Magnetic induction � is proportional to the magnetic flux 	, that is � = 	/S,

therefore

assuming that magnetic induction in the gap clearance is uniform, we obtain the 

following relationships for the flux and voltage balance:

                             � 6 =
��8'

�(� �/�)
�

�� =  �()) –  4
��

��

� ,                                                (III.2)

usually, U(t) = U0 sin (
,t ).

These ratios allow to make qualitative predictions about the nature of the exciting 

force.
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Fig. III.1. The diagram of the excitation current

components in a subharmonic mode

Fig. III.2. The electric current diagram

To a first approximation, based on physical considerations confirmed by experimental 

data, the oscillation spectrum of the supply current i(x,t) contains the main components – the

constant �� and variables with the frequencies 
1 ,
2 and the amplitudes  �1, �2. The

frequencies of the exciting current 
1 and the working member 
2 are not equal, 
1 ��
2.

The constants �
, �1, �2 are unknown and depend on the parameters of the oscillatory mode

of the machine. Fig. III.1 and III.2 illustrate the dependences i(
1), obtained for a machine

with capacity of 0.5 kW; the elastic system consists of slitting springs.

In the first case (Fig. III.1), there is no regulation current (direct current 1 = 0); for

the subharmonic mode, i contains all three components, however �
<<�1 <<�2.

In the second case (Fig. III.2), there is the bias current ( I = 4,5 � ); Figure shows

only the alternating part of the current and the accompanying constant part; ��<< �1.

Let's write the expression for the electric current in following form as follows:

          I = A0 + A1sin(
1t - �1) + A2 sin(
2t - �2),                                (III.3)

where �1 ,�2 – the unknown phase shifts, which, like  ��, A1, A2, can be determined

124 



approximately.

We expand the right side of the expression 	 in a series in powers of  �/�, and w

represent the force F in the following form:

where

     (III.4)

Taking into account the structure of  F(x,t), in which the influence of � and  t on the

exciting force is expressed in the form of separate functions - factors, we represent it in 

the form as follows:

�(�, )) = ���'	

�8�
�� �*� � ��

	

�
�
�2(��) � ��)� �1 + 2

�

�
�+ ��(�, )),        (III.5)

where

The active mass vibration differential equation will be written as follows

   (III.6)     

This equation consists of linear and parametric terms, as well as a non-linear function 

that in the summed movement does not contain a small parameter. Therefore, it is 

inappropriate to ascribe to its solution only parametric properties, and it would be more 

correct to say that it has the parametric properties with the limitations attributed to the 

non-linear equations.

The presence of linear terms in the right-hand side of the equation (6) after their 
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formal combination with similar terms in the left-hand side of the equation ultimately 

leads to the following form of the equation:

             (III.7) 

                                                                                                                                        

where k1 - is the system’s reduced rigidity, which depends on the physical rigidity of the 

linear elastic element and the additional electromagnetic component, which also has the 

properties of linear spring; �2, �1 - parameters of the equation:

The presence of the coefficients a0 ���	��2 = � in the right-hand side of the equation 

points out that the summed movement will contain a purely forced component with a 

frequency of 2
1 that is equal to the modulation frequency of the reduced rigidity, which, 

as is known, for the parametric systems is the cause of the emergence of additional 

resonances in each of the instability zones, the effect of which rapidly decreases as the 

zone number and damping coefficient increase [17].

The main properties of the nonlinear parametric equation (III.7) include: the 

existence of zones of unstable vibrations near the critical excitation frequencies

�cr 2��$�0/n , n = 1  , 2,  3,….

where �0
2
= �1/m;  the main zone here is �cr 2�$�0; the multiplicity of vibrations, among 

which some are stable and the rest are unstable; the existence of an upper limit for the 

increase in the amplitude, which is limited mainly by the non-linear properties of the 

equation; the effect of damping on the lower vibration threshold.

These features have a significant impact on the development and stabilization of 

parametric vibrations in the main zone. 

126 
 



4. The exciters with frequency separation of operating vibrations

With a view to ensuring stability of the amplitude of low-frequency vibrations, there 

was developed the scheme of the vibratory exciter, the operation of which is based on the 

principle of the magnetic flux partition along two oppositely located identical branches.

Figure III.3a shows the vibrator’sscheme, while Figure III.3b illustrates the scheme 

of the coil connections (depending on the design, it is possible to use both the U-shaped 

and H-shaped magnets). The vibrator contains the active I and reactive 2 masses, 

connected by the elastic system 3 (for example, in the form of packages of flat bow 

springs). Two U-shaped magnetic cores 4 and 5 are fixed on the active mass I, while the 

middle magnetic core with the exciting coil 7 is fixed on the reactive mass 2 (Fig.III.3a). 

The exciting coil 7 for the H-shaped magnet is installed on the central part of the middle 

magnetic core 6 (Fig.III.3b). The natural frequency of the relative oscillations of the 

masses I and 2 is equal to half the frequency of the action of the excitation pulses 
1.

Fig.III.3. The diagram of the exciter with frequency separation of operating vibrations: a)

with the U-shaped magnet and the elastic system; b) the diagram of the coil (winding) 

connections of the H-shaped magnet suitable also for the U-shaped magnet  

The vibrator works as follows. The passage of current through the coil 7 causes the 

emergence of split variable magnetic fluxes 	1 and 	2, which, after overcoming the 

resistance of the air-gap clearances � and �, are closed through the magnetic cores 4 and 

5. As a result of a certain initial structural difference (for example, 	1 > 	2, in the first 

half-periodic supply current, the middle magnetic coreb will be attracted to the marginal 

magnetic core 4. Due to a decrease in the air-gap clearance � and an increase in the gap 

clearance �, the magnetic fluxes will mainly complete through a lower air resistance �,

that is, there will be a significant increase in 	1 and a decrease in 	2. This will lead to an 

increase in the traction force from the side of the gap clearance � and its decrease from 

the side of �, and thereby the deflection of the elastic system.
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Due to the presence of diode 8 in the second half-period of the supply current, there is 

no traction force of the electromagnet, the elastic system returns the mechanical system 

back to its original position,

since 
0/
1 = 1/2, and by inertia, the neutral position will pass and the air-gap 

clearance � will decrease. The magnetic fluxes caused by the second impulse of the 

traction force will basically be locked through the air-gap clearance �, that is, the traction 

force from the side of � increases with a decrease in �.

Thus, the elastic system bends in the opposite direction.

Further, it’s happening again, in consequence of which the low-frequency vibrations 

are excited with a frequency equal to half the frequency of the traction force of 

electromagnetic excitation (this regime will be considered to be the main regime of 

operation of this vibratory exciter).

The operation of the exciter of vibrations according to the scheme shown in Figure 

III.3 is described by the following differential equations [18, 19]:

                        #�� + ��� + �� = ±�(�, ))����6;                                           (III.8)

            46 + *(� � �)6 = �())� ;                                                         (III.9)

                                
�(�, )) = 6�/ 27�( ; * = �/7�(4 ; �()) = �� sin(�) ;

where the “+” sign in the right-hand side of the equation (III.8) is taken when the magnet 

attracts from the side of the air gap clearance �, and the  “-”  sign is taken when the 

magnet attracts from the side of the gap �.

Direct substitution of the numerical values yields the one-kilowatt serial vibratory 

exciter, and the equations take on the following form:

    � = �6,5�� � 24649�� ± 3408046�����6; 

6 = 1,5 sin(�))� 300(� � �)6.

Based on the results of the solutions, an amplitude-frequency characteristic was 

constructed, which is shown in Figure 3.4a. The system is non-linear. At a natural 

frequency of 
0 = 25Hz there is an abruptfailure of oscillations at the excitation 

frequency of 
1 > 46Hz. In order to get oscillations at a frequency of 
1 =50Hz (i.e. to 

adjust the vibratory exciter to the industrial frequency), the natural frequency of the 

system should be increased by 2-3 Hz, we take 
0 = 27,5 Hz. In this case, the frequency 
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response (AFC) moves to the right, in the direction of increasing 
1. A decrease in the 

vibration amplitude for a system with �0 = 27,5 Hz is associated with an increase in the 

rigidity of the elastic system when other parameters are unchanged. The vibration

amplitude is controlled by changing Uo.

When the excitation winding is powered from the mains supply of an industrial 

frequency 50 Hz without diode 8, due to the squaring effect, the frequency of the 

propulsive burns of the electromagnet is doubled. Therefore, when tuning the elastic 

system to a frequency of 25Hz, it seems that a subharmonic mode of the order 
0/
1 = 

25/100 = 1/4 should be excited, but really, there is excited the subharmonics 1/2, since 

the main regime of operation of this machine when it is powered via a diode 8, is the 

regime with dividing the excitation frequency by two.

Fig.III.4. The amplitude-frequency characteristic of the vibratory exciter: 

a) powered via a semiconductor diode; b) powered without a diode

The equations describing. the work of the exciter of vibrations when it is powered 

without a diode have the form of (III.8), (III.9) with the difference that the symbol sign is 

absent in the equation (I). The (AFC) frequency response for this regime is shown in 

Figure 3.4b, which actually repeats the nature of the machine's operation when it is 

powered via a diode, but is shifted by 1Hz downward.

Figure III.5 shows oscillograms of steady-state vibrations of the regime with a diode 

at 
0 = 25 Hz. with the following parameters: 
1 = 41Hz; �) 
1 = 46Hz.; �) 
1 = 47Hz -

failure of oscillations.

The symmetrical arrangement of the tractive force impulses relative to the abscissa 

indicates the alternate action of this force from the sides of the air-gap clearances � and 

�. For the case with 
1 = 47 Hz, these impulses become of the same sign, this indicates 

that the vibrator from the resonance mode of frequency division of operating vibrations 

goes into the forced mode and the attraction occurs only from one side of the magnet, for 
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example, from the side of the gap �.

Studies have shown that the considered scheme of the exciter allows to generate 

stable low-frequency vibrations of essential resonance (when the frequency of operating 

vibrations is two times less than the excitation frequency) and subharmonic resonance of 

the order of 1/2 (when the frequency of operating vibrations is four times less than the 

excitation frequency). In addition, the effect of certain additional non-linearity is 

manifested, which relocates the region of existence of operating vibrations and gives the 

system a softer characteristic. 

Fig. III.5. Oscillogram of the displacement of x and  

excitations F of steady-state vibrations with   

parameters: a) frequency supply 
1 = 41 Hz; 


1 = 46 Hz; �) 
1 = 47 Hz.

5. Methods for controlling the vibration amplitude

Subharmonic vibrations with a parametric action of vibration excitation are 

accompanied by an increase in the amplitude up until the collision of the lifter with a 

magnet stator. 

The growth of the amplitudes can be limited by adjusting the damping in the exciter, 

directly affecting the parameters of the electromagnet (the magnitude of the saturation of 

the magnetic circuit, the constant component of the disturbing force), or by adjusting the 

bias current. Let us consider the methods of damping regulation in the vibratory exciter.

6. Saturation control of the magnetic core

In the electromagnetic mechanisms, the magnetic field strength � or current i is a 

function of the magnetic flux 	. The relationship between these quantities is 

characterized by a hysteresis loop, which can be represented as the sum of two functions 

- the average curve ��� = fmd(	) and the function �� = fn(	) symmetrical relative to an 
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axis 	 (Fig. III.6), [14].

Fig. III.6. Components of the magnetic 

hysteresis loop    

Usually these functions for the unsaturated state of the magnetic circuit are 

described by the following expressions:

                    8�� = *
�

� �
;                        8� =

F� �

�� �
�(��<�

� ���).         (III.10)

The function �md  describes the skeleton curve of the loop; the second function that 

fits the equation of the ellipse, describes the contour of the conditional loop.

The total field value for the ascending (+) and descending (-) branches is

                                                    H = Hmd  ±  Hn                                                                   (III.11)

Formulas (III.10) - (III.11) are valid for the upper part of the loop; the lower, 

negative part, is described by the same formula (III.10), but it is necessary to change the 

sign before the �, that is	���� � = �md + �n.

According to the experimental hysteresis loop for a typical power-supply circuit of 

the electromagnet, the constants � and �are determined, there are derived the values 

8�
� ,  8�

��, 8�
�  , 8�

�� - two pairs of values of intensity of a magnetic fields for sections �1,

�2 (Fig. III.6), chosen arbitrarily in the first quarter on the ascending and descending 

sides of the loop.

Average values of intensities:

�1 = (�1' + �1")/2

�2 = (�2' + �2")/2.

Inserting by pairs the values (�1,	1), (� 2,	2) into the equation of skeleton curve, 

we get:
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               * =
�	/�� � 

F	/F� �	/��
8�;  � =

F	/F� �

F	/F� �	/��
�� .                              (III.12)

In the symmetrical loops, the upper and lower parts (I, IV, II, III - quadrants) have 

the constants a, c of the same magnitude; in the asymmetric loops, the values of a, c from 

the upper and lower parts are different, that is, they are determined separately for two 

arbitrary sections of the upper and lower parts. Points � 2, 	2 are replaced by points ����,

	m�� for the loops with a small deviation from the ellipse. An experimental hysteresis 

loop for a two-stroke, half-kilowatt vibration machine, is shown in Figure III.7; 

certaininsignificant shift of the loop relative to the axis � is due to the presence of a bias 

current in the half cycle of the load.

The structural diagram of the device for removing the experimental hysteresis loop 

is shown in Figure III.8. The alternating current is fed to the horizontal input of a two-

coordinate oscilloscope, using a calibrated shunt �1, transformer �1 (transformation 

ratio - 1), a signal amplifier and a phase shifter (the bridge circuit consisted of two fixed 

resistors, a capacitor and one variable resistor). For the purpose of summing the 

alternating current i and the direct current I2, the secondary winding of the transformer �1

is connected in series with the calibrated shunt �2. The measurement and registration of 

the magnetic flux in the air-gap clearance was carried out using a Hall sensor - Dx), 

which was glued on the stator pole of the electromagnet. The signal taken from Dx,

through two identical amplifiers and phase shifters, is transmitted to the input of the 

vertical scan of the oscilloscope. The phase shift error is eliminated using the phase 

shifters.

In the experimental hysteresis loop shown in Figure III.7, the constants a, c, of the 

upper and lower parts of curve are different; however, in the simulation model, with a 

view to simplifying the calculation, the hysteresis loop will be regarded as symmetrical, 

and the asymmetry will be further taken into account by the constant term I2W2.

Fig. III.7. A real hysteresis loop                          Fig. III.8. The diagram of the device                  

                                                                                       for the hysteresis loop removal 
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On the experimental loop, an arbitrary point is taken, for example, a point with a 

magnetic flux 	1 = 35*10
-4

Wb, which corresponds with the intensity H1 = 55 A/m; 		��

= 38-10
–4

Wb, ���
 = 60 A/m, � 2�34��A/m; � = 340-10
-4

Wb.

The Ampere’s circuital law [2], which describes the operation of the two-stroke 

vibrating machine, takes account of the hysteresis phenomena in the magnetic core, as 

well as the constant component I2 W2. Then

                         i�W� + I�W� = (l� 2x)H(�) +
�

G�%
(	� x)�.                    (III.13)

The value (l — 2�) takes account of change in the average length of the magnetic 

field lines.

The function �(	) describes the hysteresis in the magnetic core. Thus, to solve the 

problem, we have the following equations:

                 #�� + ��� + �� =  
��

G�?
 6�����6;                                                        (III.14)

                                                                           (III.15)        

                 ���� = �� ;                                                                                        (III.16)

                 ��4� +  �4� = (� � 2�)8(�) +
�

��8
(� � �)� ;                      (III.17)     

                 8�� = *
!

1 !
   ;                                                                         (III.18)

     8� =
F� �

!� �
���<�

� � �  ;                                                             (III.19)

8 = 8�� ± 8�  .                                                                                   (III.20)

The initial parameters of a half-kilowatt vibratory feeder are as follows: W1 = 1300; 

W2 = 650; r1 = $$�56��2 #�7�56�S = 120*10
-4

m
2
; U1 = 380 V; U2 = 0 4 ÷ 24 V; m1 = 230 

kg; m2 = 420 kg; � = 147 kg; � = 0,03 - a value of the total damping coefficient; k =

3,6*10
6

N/m - the rigidity of the elastic system; l = 1,0 m.

For all considered cases of the magnetic state of the electromagnet [see the equations 

(III.13) - (III.20)], the upper half of the loop is described by the expression (III.20), the 

lower half - by the expression (III.20) with the opposite sign.

The results of solving demonstrate that the introduction of an unsaturated hysteresis 

loop does not limit the growth of the amplitude and the system operates in the impact 

mode, as in the case without regard for the loop.
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Introduction of a hysteresis loop with varying degrees of saturation limits the 

amplitude of mechanical vibrations to 2�mech = (1,84÷0,9)*10
-3

m.

Thus, by changing the degree of saturation of the magnetic core, it is possible to 

generatethe amplitude-controlled subharmonic resonant vibrations of the order of  25/50 

= 1/2.

It is known that the area of the hysteresis loop characterizes the energy that passes 

into a unit volume of the steel of the magnetic coreduring one cycle of magnetic reversal, 

and is calculated according to the formula [2]

                                          - = � 8%& = �
F

8
 %�  .

!

�

,

�
                                        (III.21)

For the case with symmetrical curve (the ellipse area), we have

                                           - = 9�8/( .                                                   (III.22)

Below are the values of the loss density obtained by formula (III.22) for different 

saturation modes of the magnetic core, when  �
/�1 = 25/50.

                                                                                                         Table III.1

H, A/m -- 60 340 650 1300 2400

2Amech*10
3
,

m

4,0 4,0 2,0 1,8 1,3 0,9

Q*10
-2

-- 0,6 1,8 4,2 10,5 20,4

� 0,04 0,04 0,06 0,08 0,09 0,19

The values of damping coefficients of the system were obtained from the 

oscillograms of free damped oscillations.

Figure III.9 shows oscillograms of the electromechanical characteristics of the 

machine in the mode of subharmonic resonant vibrations, when  2Amech = 0,5*10
-3

m; � =

0,25.

This method can be applied in practice as follows. The electromagnet designed for 

operation in a subharmonic mode is calculated so that its magnetic core is saturated. 

Then, by the excitation current drop by means of the adjusting device (rheostat, thyristor 

unit, etc.), the degree of saturation of the magnetic core changes and the vibration 

amplitude is adjusted.
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In the powerful vibrating machines, to get the maximum amplitudes, the traction 

force of the electromagnet is required, the characteristics of which (cross-sectional area 

of the winding wire and magnetic core, turning number) correspond with the 

characteristics of the unsaturated subharmonic vibratory exciter; at the same time, at a 

minimum vibration amplitude, the electromagnet must be saturated, for which it is 

necessary to increase the cross-sectional area of

Fig. III.9. Transient processes of a

subharmonic  mode

the winding wire, while maintaining its turning number (the cross-sectional area of the 

magnetic core is constant). In this case, the traction force becomes highly non-linear, the 

consumed current, magnetic losses and the mass of the exciter increase, which noticeably 

worsens its operational and energy indicators.

7. Control using the constant component of the exciting force

Regulation and limitation in magnitude of the amplitude in the low-hysteresis 

subharmonic 

machines is achieved by introducing a constant component of the exciting force. The 

schematic diagram of the vibratory exciter is shown in Figure III.10.

Vibrations between the active �1 and reactive m2 masses are excited by the rectified 

current i1, passing through a semiconductor diode VD1 and the excitation winding W1 ,

which creates a pulsating traction force F1. With the help of the half-wave rectified 

voltage obtained by the diode bridge VD2—VD5, the direct current passes through the 

winding W2, which, in turn, excites a constant traction force F2, directed opposite to the 

force F1.
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Fig. III.10. The diagram of the one-

stroke vibratory exciter with the adjustable 

amplitude of  subharmonic vibrations  

The lifters of the electromagnet are rigidly connected by means of the frame d; the 

total force acting on the vibratory exciter during the period of action of the force F1 will 

be equal to the difference between these forces: F = F1 — F2, while when F1 = 0, the 

total force F = F2. By changing the force F2 using the rheostat, it is possible to 

continuously adjust the vibration amplitude of the working member of the machine and 

the subharmonic mode.

Operation of the exciter of vibrations of thevibrating machine according to the 

indicated scheme is described by the following differential equations [16]:

a) in the conducting part of the period

#�� + c� � + �� =  �� �  �� ;                                                                     (III.23)
�

��
(:����!) + �����! + ��!���! = �� sin � ) ;                                           (III.24)

�

��
(:���) + ���� + '��� = ��|sin � )| ;                                                      (III.25)

b) in the non-conductive part of the period

#�� + c� � + �� =  �� ;                                                                             (III.26)
�

��
(:���!B) + ����!B + �!B��!B = �� sin � ) ;                                         (III.27)

�

��
(:���) + ���� + '��� = ��|sin � )|  ,                                              (III.28)

where

�� =
�

�
:���

	�
	

(� �)	
 ;              :� =

H��

� �/� 
  ;

�� =
�

�
:���

		
	

(���)	
   ;             :� =

H�	

���/� 
  ;

c - coefficient of total damping of vibrations of the mechanical system; k — the 

136 
 



aggregate coefficient of rigidity of the elastic system; L1, L2 - inductances of windings W1,

W2, depending on changes in the air-gap clearances; L01, L02 - inductances with a fixed 

lifter; rdr, rrv - resistances of an open and closed diode VD1; i1dr - instantaneous value of 

the excitation current with an open diode; i1rv - reverse current of a closed diode; i2 - the 

electric current in the vibration amplitude control circuit; other designations were 

adopted earlier. Further, taking into account the smallness of  i1rv (i1rv / i1dr ��1/1000, we 

take i1rv = 0.

With a view to obtaining a computer solution of a givensystem of differential 

equations, below are the parameters of the vibratory feeder, for which the computer 

experiment was carried out: U1 = 380V; U2 = 24V; r1 = r2 = 0,45%; rdr = 0,1%;  � = 4*10
-

3
m;  LO1 = L02 = 0,09 Hn; R1 = 6%; � = 180kg; t = 180kg; damping coefficient � = 0,08; 

rigidity of the elastic system k = 4,6*10
6

N/m.

                    Fig. III.11. The dependence 

                  of AFC on variation in F2

Figure III.11 shows the AFC (frequency response) of the vibrating machine in a 

subharmonic mode of vibration for various values of the constant component of atractive 

force F2. The natural frequency of the elastic system 
0/(2�) = 24,8 Hz; damping 

coefficient � = 0,08; the maximum tractive forceof disturbance F1 = 2290 N. The 

resonance peak occurs at 
1(2�) = 49,6 -- 49,8 Hz. As the force F2 decreases, the 

vibration amplitude increases and reaches the value 2Amech = 3.2*10
-3

m. With a force F2

��1000 N, the entire air-gap clearance � = 4*10
-3

m is selected, and a collision occurs 

between a stator and a lifter of the electromagnet; from this moment the machine is not in 

serviceable condition. 

The growth of the amplitude at AFC (frequency response) as F2 decreases, can be 

formally identified with the role of damping in a mechanical system. Therefore, the 

constant component is attributed to the external damping factors.

Figure III.12 shows the change in the amplitudes of subharmonic vibrations 
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depending on change in the traction force F2 for a machine with the same parameters as 

in Figure III.11, at different excitation frequencies.

Fig.III.12. The dependences of the   

amplitude of subharmonic vibrations

and F2 with different 
1

The results given in Figure III.12 show that more effective regulation of the 

vibration amplitude is obtained at the exciting frequency of 
1/(2�) = 49,7÷50,3 Hz. The 

vibration amplitude under these conditions changes in the range of F2 = 400 ÷ 1700 N.

When operating in the resonance peak mode (
1/(2�) = 49,7Hz), in order to regulate the 

vibration amplitude, more energy is consumed than in the modes 
1/(2�) = 50; 50,3 Hz; 

in the first case F2 8�9����N, in the second case - F2 8�3���N. However, the existence of a 

relationship between � and  F2 allowsfor changing the sensitivity of the machine control.

Figure III.13 shows oscillograms of changes in the currents, exciting forces and 

forces of regulation, as well as their displacements. With a decrease in the current i2 and 

the tractive force F2 at a constant amplitude of the force F1, the vibration amplitude 

increases, and vice versa. Oscillograms indicate the asymmetry of vibrations caused by 

the interaction of forces F1 and F2, and the existence of an additional component (50 Hz) 

in oscillogram of the displacements at small amplitudes. With an increase in the 

amplitude, these components disappear, and the system enters the mode of subharmonic 

resonant vibrations.

Figure III.13 shows the solution of the equations (III.23) - (III.28), written with 

respect to the currents i1, i2. The oscillogram of the traction force F1 is similar to the 

oscillogram of the current i1. The force F2, corresponding with the direct current of 

regulation i2, is also constant in both half-periods, although it is shown on the oscillogram 

in the form of alternating positive and negative segments; this is due to the feature of the 

simulation of the equations (III.23) and (III.26), in which F2 is negative in one case and 

positive in the other case.
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Fig. III.13. Forms of mechanical and 

electric characteristics when controlling 

the amplitude using a constant 

component F2

Mathematical modeling made it possible to study the magnitudes of the amplitudes of 

the exciting force and displacements with other parameters of the vibratory exciter of 

subharmonic vibrations. The research results at 
1/(2
) = 50 Hz and 
0/(2
) = 24,8 Hz

are shown in Table. III.2.

In these experiments, a relationship is found between the damping coefficient of the 

system and the tractive force F2 required to obtain the operating vibration amplitude. 

With increasing the damping coefficient, the traction force F2 decreases, at which the 

vibration amplitude remains the same, for example, 2�mech=1,0*10
-3

m (Table III.2). The 

subsequent increase in the damping coefficient completely damps down the vibration 

amplitude. The interval � = 0,2 ÷ 0,3 is critical for this system. Consequently, we can 

say that the tractive force F2 plays the role of certain conditional additional damping, 

which, in contrast to the forces of mechanical damping in the elastic system, can be 

easily and stably regulated over a wide range, making it possible to accurately reach the 

level of the critical damping coefficient in the mode of sub-harmonic vibrations.

While maintaining the above calculated parameters of the serial vibratory feeder, 

converted according to the scheme shown in Figure III.10 at the standard excitation 

frequency 
1/(2
) = 50Hz, the experiments were carried out on a real machine. The result 

of the experiment is shown by the dashed line in Figure III.12.

As we can see, the relationships  �mech = Amech(F2), obtained theoretically and 
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experimentally, coincide quite satisfactorily within the limits of the practical spread of 

the initial parameters of a real machine (the spreads in the ohmic resistance of the 

winding, turning number, the cross-section of the magnetic coreis about 8-10 %).

Table III.2

� F1, N F2, N 2Amech*10
3
,m

0,06 2290

2290

2080

1660

1460

1350

1250

1040

0

0,6

0,7

0,9

1,4

2,4

2,8

3,7

3,7

0,1 2290

2290

2080

1660

1460

1250

1040

830

728

625

416

0

0

0

0

0,2

0,5

1,0

1,2

1,9

2,5

3,7

3,7

0,2 2290

2290

2080

1660

1460

1250

832

625

416

270

166

0

0

0

0

0

0

0,3

0,6

0,95

1,25

3,7

3,7

0,3 2290 0-2290 0

Thus, the studies carried out have shown the feasibility of creating the low-frequency 

vibration exciters, in which the amplitude of subharmonic vibrations is regulated using a 
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constant component of the exciting force.

Pursuant to the model studies carried out, the exciters of subharmonic vibrationshave 

been developed, the use of which has been made possible in the low-frequency machines 

with an adjustable amplitude.

8. Regulation of the free frequency of the elastic

system using the bias current

During operation, the characteristics of the vibrating machine may vary. For example, 

in the vibrating machines, the added mass changes the natural frequency of the system 

and, in order to ensure maximum performance, there is a need for its adjustment.

To this end, let us consider operation of thevibratory exciter (Fig. III.14), in which a 

bias winding with turning number W3 and the rheostat  R2 are added. In this case, the 

exciting force

is created by simultaneous action of the rectified current i1, current i2 and the bias 

current i3. By creatinga bias current, it is possible to control the natural frequency of the 

system, while the creation of a current i2 allows to control the amplitude of mechanical 

vibrations.

Fig. III.14. The control scheme of the amplitude of a one-stroke vibratory exciter 

The operation of thisvibratory exciter is described by differential equations (III.23) -

(III.28), but on the right-hand side of the equation (III.24), a voltage � is added, taking 

into account the effect corresponding with the bias current when the disturbing force F1 is 

formed. The voltage balance equation takes the form

�

��
(:���) + ���� + ��!�� = �� sin � ) + 0                                       (III.29)
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Based on the results of the solutions, the AFC (frequency responses) of the vibrating 

machine wereconstructed. Figure III.15 shows the frequency response of the vibratory 

exciter of the main resonance mode (50/50; � = 0,06; i3 = 0), and Figure III.16 illustrates 

the frequency

response of the subharmonic mode (25/50; � = 0,06; i3 = 8�). If for the main mode with 

an increase in the bias current, the change in the natural frequency is very effective and is 

about 3Hz (6%), then for the subharmonic mode this change is insignificant and does not 

exceed 0.5Hz, and therefore hadno use in the low frequency machines.

Fig. III.15. The dependence of AFC on the bias current in the main mode  

Fig. III.16. The dependence of AFC on the bias current in the subharmonic mode  

Of interest is the interconnection of the damping coefficient of the system in the 

subharmonic mode with two other changing parameters: the vibration amplitude control 

current i2 and the bias current i3. To this end, different modes of operation of the exciter 

were simulated at a constant excitation frequency 
1/(2
) = 5�Hz. Errors in the 

manufacture and assembly of the elastic system were simulated by changing the natural 

frequency 
0/(2
) = 24,5÷26Hz, damping coefficient � = 0,1÷0,03, and the electric 

currents i2 = i3 = 4 ÷ 8�. Experiments suggest that by changing �, the number of variants 

of the varying values i2, i3, at which the amplitude of mechanical vibrations reaches its 
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maximum value (in this case, 2�mech = 3,7mm), also changes depending on the setting the 

system for resonance 
0�
1. Thus, using the constant component of the exciting force 

created by the bias current, a constant magneticfield emerges that prevents the movement 

of the lifter. The magnitude of the preventing force depends on instantaneous gap; the 

magnetic field strength plays the role of the additional variable rigidity; the constant 

component of the system’s rigidity is created by the mechanical elastic elements. Since in 

this case there is a non-linear system, the total rigidity of which depends on i3 (generally 

on i2 + i3), by changing parameters of the magnetic field, it is possible to adjust the total 

��)������ 
��� �
���
�� ���������� :������ � ;� <�
 
��
����
���� <�
 2� ;� �&%� =>�&� �����
combined with the method of direct control of the force F2, it is possible to effectively 

control the amplitude of subharmonic vibrations; however, this somewhat complicates 

the regulatory scheme by adding the additional winding W3.

9. The effect of the bias current constant 

component on the damping coefficient

The force of attraction depends nonlinearly on the gap clearance in the electromagnet, 

as well as on the constant and variable components of the total supply current. The DC 

attractive component has an additional damping property. The latter is due to a decrease 

in the elastic resistance force of the magnet with a decrease in the amplitude of the 

mechanical vibrations of the working member, which increases the instantaneous 

amplitude of the gap, and vice versa. The presence of the hysteresis loop of the variable 

component of the magnetic field enhances the vibration damping property. When the 

system is turned off in a field of constant attractive force (AC power supply to the 

magnet is terminated), the damping coefficient increases by approximately 2-7 times (at 

the high bias currents).

The power required to move the material, that is, for useful work, does not depend on 

the constant component of the current; only the power consumed by the machine changes 

to overcome internal resistances and create periodic vibrations of the working member.

The experimental determination of the damping characteristics was carried out on a 

machine with a low-hysteresis elastic system.

The constant component of the excitation (current strengthi2) fluctuated between 0 

and 4A. At higher values of i2, the lifter sticks to the core from the side of the regulating 

magnet.
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Fig. III.17. The dependence of damping coefficient on variation 

in the constant component of the excitation current 

Thus, in the transient modes when the machine is turned on or off, when there is an 

exponential increase (to a maximum) or a decrease (to zero) in the strength of the 

constant component of the current, this factor has a short-term but significant effect on

the intensity of progressing the transient processes.

Conclusions

Studies of the nonlinear electromagnetic exciter of vibrations conducted through the 

theoretical calculations and mathematical modeling of the main electric and mechanical 

characteristics, as well as by means of the field tests of a real physical model,allow us to 

draw the following conclusions:

1. A nonlinear exciting force with a linear nature of the mechanical system plays a 

central role in the excitation of the main and subharmonic modes in the vibrating 

machines;

2. The developed new scheme of the exciter allows remotely, in the process of 

operation, to fluentlycontrol the amplitude of subharmonic vibrations using the negative 

component of the exciting force;

3. Using the method of mathematical modeling of operation of the exciter of 

vibrations with a nonlinear exciting force, it has been shown that:

a) the constant component of the magnetic flux affects the generation of the total 

damping coefficient of the system for both the main and subharmonic resonance modes;

b) fluent control of the amplitude of subharmonic vibrations using the constant 

component of the exciting force is more effective compared with saturation of the 

electromagnet;

4. A comparison of the results of studies of a real vibrating machine with a 

mathematical model indicates a good agreement between the mathematical statement of 

problem and the experiment;
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5. The results obtained in this work (in particular, obtaining an amplitude-controllable 

subharmonic resonance mode) can significantly reduce the mass and dimensions of the 

vibration exciter, lower the level of radiated noise and transfer of dynamic loads to the 

support structures.
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