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Summary

In Bayesian statement of hypotheses testing, instead of unconditional problem of minimization of average
risk caused by the errors of the first and the second types, there is offered to solve the conditional optimization
problem when restrictions are imposed on the errors of one type and, under such conditions, the errors of the
second type are minimized. Depending on the type of restrictions, there are considered different conditional
optimization problems. Properties of hypotheses acceptance regions for the stated problems are investigated and,
finally, comparison of the properties of unconditional and conditional methods is realized. The results of the
computed example confirm the validities of the theoretical judgments.

Key words: Bayesian problem, hypotheses testing, significance level, conditional problem, unconditional
problem.

1. Introduction
In many branches of mathematical statistics, some of basic methods are the methods based on the Bayes

theorem, which are called the Bayesian methods. The Bayesian methods are also widely used in the theory and
practice of making the statistical decisions, in particular, in hypotheses testing. To the development of this
method, a lot of scientific works are devoted [see, for example, 1-13]. Among different methods of testing of
statistical hypotheses, the Bayesian approach is of primary importance as, under certain conditions (actually
always fulfilled at solving practical problems), the class of Bayesian decisions is complete concerning  , where
 is a set of all decision rules  with bounded risk functions [14, 15]. As is known, at testing of statistical
hypotheses errors of the first and the second types could be made [16-18]. The error of the first type corresponds
to the case when a true hypothesis is rejected and the error of the second type corresponds to the case when an
incorrect hypothesis is accepted. By choosing the loss function it is practically impossible to achieve that the
decision made would be free of errors even of one type to a certain extent, for example, to obtain that the
probability of correct hypothesis testing was not less than the given level, and, under such conditions, the
probability of incorrect hypothesis testing was as minimum as possible. In classical Bayesian approach, the risk
of total errors caused by the errors of the first and second types is minimized, and the exact ratio among them is
unknown, i.e. we do not know which share of total risk is caused by the errors of one type and which – by
another. For elimination of this drawback, instead of unconditional problem of minimization of average risk
caused by the errors of the first and the second types, there is offered to solve the conditional optimization
problem when restrictions are imposed on the errors of one type and, under such conditions, the errors of the
second type are minimized. Depending on the type of restrictions, there are considered different conditional
optimization problems. Properties of hypotheses acceptance regions for the stated problems are investigated and,
finally, comparison of the properties of unconditional and conditional methods is realized.

2. Statement of the Problem
2.1. General Statement of the Bayesian Problem of Hypotheses Testing

Let us consider n -dimensional random observation vector ),...,( 1 n
T xxx  with probability

distribution density 1 1( , ) ( ,..., ; ,..., )n mp x p x x   , given on  -algebra of Borellian set of space
nR )( nRx , which is called the sample space. By ),...,( 1 m

T   is designated the vector of parameters

of distribution. In general, mn  . Let in m -dimensional parametrical space m be given S possible values

of considered parameters ),...,( 1
i
m

iiT   , Si ,...,1 , i.e. ;mi  Sii ,...,1:  . On the basis of

),...,( 1 n
T xxx  it is necessary to make the decision namely by which distribution ( , )ip x  , Si ,...,1 , the

sample x is generated. Let us introduce designations: ,: i
iH   is the hypothesis that the sample

),...,( 1 n
T xxx  is born by distribution 1 1( , ) ( ,..., ; ,..., ) ( | )i i i

n m ip x p x x p x H    , Si ,...,1 ; ( )ip H is

the a priori probability of hypothesis iH ;  D d - a set of solutions, where  1,..., Sd d d , it being so that

1 , ,

0 , ;

i
i

i f h y p o t h e s i s H i s a c c e p t e d
d

o t h e r w i s e


 
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 )(),...,(),()( 21 xxxx S  is the decision function that associates each observation vector x with a

certain decision: ( )xx d D  .

j is the acceptance region of hypothesis
j

H , i.e.  1)(:  xx jj  . It is obvious that ( )x is

completely determined by regions j , i.e. 1 2( ) { , ,..., }Sx     . Let us introduce loss function

))(,( xHL i  , which determines the value of loss in the case when the sample has the probability distribution

corresponding to hypothesis iH , but, because of random errors, decision )(x is made.

When the decision is made that hypothesis iH is true, in reality true could be one of the following

hypotheses Sii HHHH ,...,,,..., 111  , i.e. accepting one of hypotheses we risk to reject one of )1( S really

true hypotheses. This risk is called the risk corresponding to hypotheses iH and is equal to [3, 19]:

( , ) ( , ( )) ( | )
ni i i

R
H L H x p x H dx    .

For any decision rule )(x , a complete risk, i.e. a risk of making the incorrect decision, is characterized
by the function:

1 1
( ) ( , ) ( ) ( , ( )) ( | )

n

S S

i i i i ii i R
r p H H p H L H x p x H dx   

 
    , (1)

which is called the risk function.

Decision rule )(* x , or, which is the same, Sii ,...,1,*  - the regions of acceptance of hypotheses

SiH i ,...,1,  , are called Bayesian if there takes place:

 
*

( )
min

x
r r 

 . (2)

By solving task (2), we obtain [19, 20]:

1 1
{ : ( , ) ( ) ( | ) ( , ) ( ) ( | );

: (1,..., 1, 1,..., )}, 1,..., .

S S

j i j i i i k i ii i
x L H H p H p x H L H H p H p x H

k k j j S j S

 
  

    

 
(3)

2.2. Conditional Bayesian Tasks of Hypotheses Testing
Decision rule (3) minimizes risk function (2), which contains the errors of both kinds. The shares of these

errors are unknown. As was mentioned above, at solving a lot of practical problems, it is necessary to have a
guarantee that the error of one kind does not surpass a certain value, and, in such a situation, to minimize the
error of other kind. For obtaining such decision rules, we introduce the statements of conditional Bayesian
problems and develop the methods of their solution [21, 22].

The examples of practical problems when statements given below are necessary are: 1) air defense – the
cost of incorrectly detected target and the missed one is different, and defence interests demand guaranteed
detection of hostile flying vehicles; 2) identification of river water emergency pollution sources; 3) medicine
production – the cost of overdosing and underdosing is not identical and the safety of patients requires
guaranteed protection of prepared medicines against overdosing; 4) market investigation with the purpose of
making recommendations about investments - guaranteed protection from the loss of invested credits; 5)
revealing the fact of ship bending on the basis of the measurement results of special sensors; 6) the problem of
sustainable development of production and so on.

2.2.1. Restriction on the averaged probability of acceptance of true hypothesis (Task 1)
As was mentioned above, the general function of losses consists of two components:  the losses caused by

incorrectly accepted and by incorrectly rejected hypotheses.
Let us designate by ( , )f iH  and ( , )p iH  the mathematical expectations of losses caused by

incorrectly accepted and incorrectly rejected hypotheses, respectively, brought by decision rule )(x provided

that hypotheses iH is true:

1,
( , ) ( , ( ) 1)

S

f i x i jj j i
H E L H x  

 
     ,

1,
( , ) ( , ( ) 0)

S

p i x i jj j i
H E L H x  

 
     . (4)
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As the loss functions for rejection and incorrect acceptance of each hypothesis, we take the probabilities
of these events. Then expression (4) takes the form:

1,
( , ) ( | )

j

S

f i ij j i
H p x H dx 

  
  ,

( , ) ( | ) 1 ( | )
i i

p i i iH p x H dx p x H dx 
 

    ,

1,..., .i S
The averaged value of probabilities of incorrectly rejected hypotheses given by decision rule )(x is

determined as follows:

1 1 1,
( ) ( , ) ( ) ( | )

j

S S S

i f i i ii i j j i
r p H H p H p x H dx  

    
     . (5)

Trying to minimize r by choosing )(x , we shall demand from it that the averaged value of incorrectly
accepted hypotheses was not higher than the set level  , i.e.

1 1
( ) ( , ) 1 ( ) ( | )

i

S S

i p i i ii i
p H H p H p x H dx  

  
     . (6)

Let  be a set of those decision rules )(x which satisfy condition (2.6). Decision rule )(* x is called
optimum if


rr


 min* , (7)

Let us rewrite restrictions (6) as follows:

1
( ) ( | ) 1

i

S

i ii
p H p x H dx 

 
   . (8)

For solving conditional optimization problem (7), (8) we shall use the method of indeterminate Lagrange
multipliers.

The Lagrange function looks like:

1 1, 1
( , ) ( ) ( | ) ( ) ( | ) (1 )

j j

S S S

i i j jj i i j j
p H p x H dx p H p x H dx   

    

           

 1 1, ( )
( ) ( | ) ( ) ( | ) (1 ) min

j

S S

i i j jj i i j x
p H p x H p H p x H dx


  

  
        , (9)

where  is the Lagrange multiplier.
The Lagrange multipliers have an important economic interpretation as shadow prices of the constraints

and their optimal values are very useful in sensitivity analysis [23].
As in (9) the last term is a constant, it is neglected at minimization.
The minimum in (9) is achieved by minimizing every term in it provided that in (8) the equality takes

place. The minimum of integrated function by the region of integration is obtained by inclusion of those points
of space of integration at which the function is negatively determined into this region, i.e.

 1,
: ( ) ( | ) ( ) ( | ) , 1,..., ,S

j i i j ji i j
x p H p x H p H p x H j S

 
    (10)

where  , the same scalar value for all regions, is determined so that in (8) the equality takes place.

2.2.2. Restrictions on conditional probabilities of acceptance of each true hypothesis (Task 2)
Let us determine decision rule )(x so that the probability of acceptance of any of tested hypotheses, if

they are true, was not lower than the set level, i.e. (7) took place under the condition:

( | ) 1 , 1,..., .
j

jp x H dx j S


   (11)

The latter is the restriction on the probability of no rejection of hypotheses jH if it is true.
Thus, in this task, it is required to minimize risk function (5) under condition (11).
The solution of task (5), (11), by using Lagrange method, has the following form:

 1,
: ( ) ( | ) ( | ) , 1,..., ,S

j i i j ji i j
x p H p x H p x H j S

 
     (12)

where ,,...,1,0 Sjj  are determined so that in (11) the equality took place.
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2.2.3. Restrictions on the posterior probabilities of acceptance of each true hypothesis (Task 3)
It is required to minimize average risk (5) at restrictions:

( ) ( | ) 1 , 1,..., .
j

j jp H p x H dx j S


   (13)

In this case, the optimum region of acceptance of a hypothesis is:

 1,
: ( ) ( | ) ( ) ( | ) , 1,..., ,S

j i i j j ji i j
x p H p x H p H p x H j S

 
     (14)

where ,,...,1,0 Sjj  are determined so that in (13) the equality took place.

This solution formally will coincide with the solution of Task 2 if we introduce designation / ( )j j jp H   .

From restrictions (13), it is obvious that this problem is meaningful only if )1(  does not surpass a priori

probabilities )( jHp , Sj ,...,1 , or, otherwise, 1 ( ) ( | )
j

j jp H p x H dx


   . Therefore, for practical aims,

this task is of little interest. Though the significance of this problem could increase considerably when a priori
information, for any reason, is of special importance.

2.2.4. Restriction on the averaged probability of rejection of true hypotheses (Task 4)
In the previous tasks, the optimality of decision rules was defined so that the errors caused by incorrect

acceptance of hypotheses were minimized at restrictions on the errors caused by incorrect rejection of
hypotheses. Now we shall act on the contrary, i.e. we shall restrict the probabilities of errors caused by incorrect
rejection of hypotheses and minimize the probabilities of errors caused by incorrect acceptance of hypotheses.
Thus, we shall find such decision rule )(x for which there takes place:

 
/

1 1
( ) ( , ) 1 ( ) ( | ) min

i i

S S

i p i i ii i
r p H H p H p x H dx  

   
       , (15)

at restrictions:

1 1 1,
( ) ( , ) ( ) ( | )

j

S S S

i f i i ii i j j i
p H H p H p x H dx  

    
      . (16)

It is obvious that the minimum in (16) is achieved at maximization of the expression:

 1
( ) ( | ) max

i i

S

i ii
G p H p x H dx   

   . (17)

Value G is the averaged probability of acceptance of true hypotheses. We shall call it the average power of

criterion.
Thus, the problem consists in solving task (17) under restriction (16).
Application of the Lagrange method gives:

 1,
: ( ) ( | ) ( ) ( | ) , 1,..., .S

j j j i ii i j
x p H p x H p H p x H j S

 
    (18)

Coefficient 0 is the same for all regions of acceptance of hypotheses, and it is determined so that in (16)
the equality takes place. It is obvious that this task is inverse to Task 1 in the sense that in them opposite kinds of
errors are minimized and the restrictions are also imposed on opposite types of errors. At (1) (4)1/  , regions
of acceptance of hypotheses formally coincide in both tasks. Here the indexes specify belonging to the
appropriate task. Generally, )1( and (4)1/  , are not equal. By comparing restrictions (6) and (16), we conclude

that the coincidence of regions of acceptance of hypotheses, i.e. equality (1) (4)1/  is possible if and only if
the following takes place:

1,

S

i jj j i 
   .

This point will be discussed more fully in section 3.
2.2.5. Restrictions on the probabilities of rejection of each true hypothesis (Task 5)

In this case, the problem is formulated as follows. To find the decision rule for which in (17) the
maximum is achieved under restrictions:

( | ) , , 1,..., ; .
j

ip x H dx i j S i j


   (19)

In this case, application of the Lagrange method gives:
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 1,
: ( ) ( | ) ( | ) , 1,..., ,S

j j j ij ii i j
x p H p x H p x H j S

 
     (20)

where )1( S -dimensional vectors of parameters ),...,,,...,( ,,1,1,1 jSjjjjjj   , Sj ,...,1 , with
positive components, are determined so that in (19) the equality took place.

2.2.6. Restrictions on the posteriori probabilities of rejection of each true hypothesis (Task 6)
The problem consists in maximization of averaged power of criterion (17) under the condition:

( ) ( | ) , , 1,..., ; .
j

i ip H p x H dx i j S i j


   (21)

Lagrange solution of this task is:

 1,
: ( ) ( | ) ( ) ( | ) , 1,..., ,S

j j j ij i ii i j
x p H p x H p H p x H j S

 
    (22)

where 0ij are determined so that in (21) the equality took place.

At introduction of designations / ( )ij ij ip H   , this solution formally coincides with the solution of Task 5

(22), i.e. the values ij in (22) in principle can be chosen so that the regions of acceptance of hypotheses of

Tasks 5 and 6 coincide. It is obvious that, in general, these regions differ from each other.
2.2.7. Restrictions on averaged probabilities of rejected true hypotheses (Task 7)

Let us determine decision rule )(x so that condition (17) was satisfied under restrictions:

1,
( ) ( | ) , 1,..., .

j

S

i ii i j
p H p x H dx j S

  
   (23)

By solving the Lagrange problem we get:

 1,
: ( ) ( | ) ( ) ( | ) , 1,..., ,S

j j j j i ii i j
x p H p x H p H p x H j S

 
    (24)

where coefficients ,,...,1,0 Sjj  are determined so that in restrictions (23) the equality took place.

If we introduce the designations / ( ) /j j jp H  , solution (24) formally coincides with the solution of

Task 2, i.e. by selection of coefficients j both regions (12) and (24) could be identical, but, in general, these
regions obviously differ from each other.

Analyzing the forms of regions of acceptance of hypotheses in the considered tasks, it is not difficult to be
convinced that they have the form analogous to the regions defined in the generalized Neyman-Pearson criterion
[17]. Though, in contradistinction to the latter, in the considered cases, the regions of acceptance of hypotheses
are more complex and, as we shall see below, in general case, they are not mutually exclusive regions.

3. Properties of Hypotheses Acceptance Regions
It is known that, in classical statements of the problem of statistical hypotheses testing, their acceptance

regions are not intersected, i.e. i j   , i j , and the union of all regions of acceptance of hypotheses

coincides with the observation space, i.e.
1

S n
ii

R

  . In the validity of these conditions, it is easy to be sure

by consideration of regions of acceptance of hypotheses in classical Bayesian task of hypotheses testing (3). In
particular, it is not difficult to be sure that, at 2S , the hypotheses acceptance regions for classical Bayesian
task (3) have the form:

 1 2 2 1 1: ( ) ( | ) ( ) ( | )x p H p x H p H p x H   ,

 2 1 1 2 2: ( ) ( | ) ( ) ( | )x p H p x H p H p x H   . (25)

It is obvious that the following conditions are satisfied: 211  nR and 122  nR , as was
shown above. These conditions break down at consideration of above-formulated conditional Bayesian task of
hypotheses testing. Let us investigate this fact. From the analysis of the regions (10) and

 1,
: ( ) ( | ) ( ) ( | ) , 1,..., ,S

j i i j ji i j
x p H p x H p H p x H j S

 
     

we infer that, analogously of the case 2S  , here is some value * for which the rejection region of hypothesis

jH and the acceptance region of any other hypothesis ,;,...,1, jiSiH i  coincide, i.e. there take place:
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1

S n
ii

R

  , i j   , , 1,..., ,i j S i j  . (26)

In this case, on the basis of observation result x there will always be accepted one of the tested
hypotheses. Though, on the basis of comparison of regions (10) and the regions of acceptance of hypotheses in
unconditional Bayesian task (3), irrespective of the kind of loss function, we infer that, these regions differ from
one another, i.e. the regions of acceptance of hypotheses in conditional Bayesian Task 1, at *  , do not
coincide with the regions of acceptance of hypotheses in the unconditional Bayesian Task.

At *  , there takes place * *( ) ( )j j        . This is possible only when i j    ,

, 1,..., ,i j S i j  . In this case

1,

S

i ji i j 
   ,

i.e. rejection region of hypotheses jH is contained in the united region of acceptance of other hypotheses. This

is available only if region j of acceptance of hypothesis jH intersects with one or more (in the limit, with all)

regions of acceptance of other hypotheses.  At *  , there takes place * *( ) ( )j j        . This is

possible only when in observation space nR there are sub-regions which do not belong to any region
*( )j    , 1,...,j S . In this case there takes place

1,

S

i ji i j 
  ,

i.e. the united region of acceptance of hypotheses },...,,,...{ 111 Sjj HHHH  is contained in the rejection

region of hypotheses jH . Thus, in the observation space nR , there are such sub-regions which do not belong to
any region of acceptance of the tested hypotheses.

Here arose the situation analogous to the one considered above, i.e. at testing many hypotheses, in Task 1
it could appear impossible to make a simple decision or to make any decision when the measured value falls into
the sub-regions of intersection of regions of acceptance of hypotheses (at *  ) or falls into the sub-regions
which do not belong to any region of acceptance of hypothesis (at *  ) respectively. In such cases, for
acceptance of any tested hypotheses, we have to use one of the methods: 1) to realize repeated observations (if it
is possible) until the moment when the arithmetic mean of the observation results appears only in one of
hypotheses acceptance regions and to accept the corresponding hypotheses; 2) to increase or to decrease  (to
which correspond decreasing or increasing  ) until the measured value appears only in one of hypotheses
acceptance regions. In limit, when *  there will be accepted without fail one hypothesis for any measured
value. If * for which the ratio (26) is fulfilled does not exist that means that for given x to make simple
decision is impossible without additional information (see example, the case (2.5,2.5)x  ). Additional
information can be given as new values of a priori probabilities of hypotheses or repeated observations as was
mentioned above. It is not difficult to be convinced that hypotheses acceptance regions in other conditional tasks
have the same properties.

4. On the Ratio of Average Risks in Conditional Bayesian Tasks
Proceeding from the essence of stated conditional Bayesian tasks, they can be grouped as follows: tasks in

which the average value of probabilities of falsely rejected hypotheses is minimized, i.e. the average risk under
restrictions on the probabilities of errors caused by incorrect acceptance of hypotheses (Tasks 1, 2 and 3), and
the tasks in which is minimized the average probability of errors caused by incorrect acceptance of hypotheses,
which is equivalent to maximization of the average power of criterion under the restrictions on the probabilities
of incorrectly rejected hypotheses (Tasks 4, 5, 6 and 7). These at a glance mutually inverse tasks, as it has been
shown above (see Sections 2), in the general case, are not mutually inverse, i.e. by simple transformation it is
impossible to obtain another target function. Therefore, in the general case, by the achieved level of target
function, it is possible to compare separately Tasks 1, 2 and 3 and separately Tasks 4, 5, 6, 7. In that specific
case, for the certain values of undetermined Lagrange multipliers in the solutions of these tasks, it is possible to
reason about the ratio of target functions calculated in different groups of the tasks.

Let us notice that, about the interrelation among the average risks calculated in considered conditional
Bayesian tasks, we can reason only under the condition that the values of probabilities  in the restrictions of
all considered tasks are identical. Let us consider the first group of the tasks. The comparison of restrictions (8)
and (11) shows that the fulfillment of restrictions (11) always causes the fulfillment of conditions (8), but not on
the contrary. That is, from these two restrictions, more “rigid” is condition (11). Therefore, it is natural to
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conclude that the average risk calculated in Task 2 is always not more than the average risk calculated in Task 1,
i.e. there takes place:

* *,2 ,1r r  .

Comparing restrictions (11) and (13) we infer, that restrictions (13) are more “rigid” than restrictions (11),
because the fulfillment of conditions (13) always causes the fulfillment of condition (11), but not on the contrary.
Therefore the average risk calculated in Task 2 is always not less than the average risk calculated in Task 3.
Thus, for the first group of the tasks, the following ratio between the optimum values of average risks calculated
in these tasks takes place:

* * *,3 ,2 ,1r r r    .

Let us compare the optimum values of average criterion powers calculated in the second group of the
tasks. It is not difficult to guess that restrictions (16) are less “rigid” than restrictions (19), because the
fulfillment of restrictions (19) always entails the fulfillment of restrictions (16). Therefore, the average power of
criterion corresponding to restrictions (19) (Task 5) will always be not more than the similar value corresponding
to restrictions (16) (Task 4), i.e. there takes place:

4,5, ** 
GG  .

Similar reasoning for restrictions (16), (19), (21) and (23) shows that the most “rigid” are restrictions (21)
(task 6), then - restrictions (23) (task 7), then - restrictions (19) (Task 5) and, at last, the weakest restriction is
(16) (Task 4). Therefore, among the average powers of criterion calculated in these tasks, there is the following
ratio:

* * * *,6 ,7 ,5 ,4G G G G      .

As it was shown in Section 3, if the values of Lagrange multipliers in Tasks 1 and 4 are equal to * , the
corresponding regions of acceptance of hypotheses in these tasks coincide and the following equality takes place:

* ,1 1 1, 1
( ) ( | ) ( ) 1 ( | )

j i

S S S

i i i ii j j i i
r p H p x H dx p H p x H dx
     

         
* ,41

1 ( ) ( | ) 1
i

S

i ii
p H p x H dx G

 
     . (27)

In accordance with the results given in Section 3, if the number of hypotheses is equal to two, the
following statement is true.

Proposition 4.1. If for Lagrange multipliers in the solutions of the stated tasks, the following equalities

are satisfied: 1) 1)1(  ; 2) (2) (2)
1 2 1 2( ) ( )p H p H    ; 3) 1)3(

2
)3(

1  ; 4) 1)4(  ; 5)

)()( 21
)5(

21
)5(

12 HpHp  ; 6) 1)6(
21

)6(
12  ; 7) (7) (7)

1 2 1   , the following conditions are true:

* * * * *, ,1 ,2 ,4 ,5uncond
r r r r r          , (281)

where * *,4 ,41r G   and * *,5 ,51r G   ;

* *,6 ,7 2r r     , (282)

where * *,6 ,61r G   and * *,7 ,71r G   .

Here the indices in brackets specify belonging to the corresponding tasks. It is not difficult to be
convinced in validity of (28) by substitution in relation (27) the suitable restrictions of the considered tasks.

5. Comparison of Unconditional and Conditional Methods
Let us consider example for a concrete probability distribution law, in particular, the normal law

1/2/2 11( | ) (2 ) exp ( ) ( ) ,
2

n i T i
ip x H W x a W x a       

 
1,..., ,i S

for experimental research of the properties of offered algorithms. In Example there are investigated the qualities
of hypotheses testing by unconditional and conditional Bayesian algorithms. From Example the character of
changes in coefficients  and regions of acceptance of hypotheses with changing  under the appropriate
restriction of the considered tasks, and also of the ratios among the qualities of hypotheses testing in conditional
and unconditional Bayesian tasks, is evident.

Example. Tested hypotheses: 1 1
1 1 2: 1, 1H    , 2 2

2 1 2: 4, 4H    . A priori probabilities of the

hypotheses: 5.0)( 1 Hp , 5.0)( 2 Hp . Covariance matrices used:

1
1 0
0 1

W
 

  
 

, 2
1 0.4

0.6 1
W

 
  
 

, 2
1 0.8

0.99 1
W

 
  
 

.
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On the basis of calculation results brought in Table, we infer the following. The calculated values of
average risk r in Tasks 1 and 2 and the average power of criterion subtracted from one G1 in Tasks 4 and

7 for the values of  for which Lagrange multipliers take the values 1)1(  , 5.0)( 1
)2(

1  Hp ,

5.0)( 2
)2(

2  Hp , 1)4(  , and 1)7(
21

)7(
12  , respectively, coincide with  for Tasks 1, 2 and 4 and

with the value of average risk in the unconditional task and with 2 for Task 7.
In the general case, in all conditional Bayesian tasks, the interval of changing  contains three sub-intervals.

If  falls in the middle subinterval the correct decision is made, and, if it falls in the left or the right
subintervals, there are accepted or rejected both hypotheses. To the extreme sub-intervals correspond the values
of Lagrange multipliers opposite concerning unity, i.e. less or more than one. For example, in conditional Task 1
for 49.1,49.1 21  xx and 1W , for extreme points of subinterval  where hypothesis 1H is accepted, i.e.
for 0002.0 and 244.0 , there takes place 387.411 and 0234.0 , respectively, i.e.
coefficient  changes from 387.411 to 0234.0 .

For all considered covariance matrices and  for which Lagrange coefficients in conditional tasks satisfy
condition )1( )2(

1 )2(
2 )4( 1)7(

21
)7(

12  , comparison of calculation results of unconditional and
conditional tasks confirm the validity of Proposition 4.1. In particular, there takes place

* * *, ,1 ,2uncond
r r r     * *,4 ,71 (1 ) / 2G G    .

At 5.2,5.2 21  xx , the middle subinterval, i.e. the subinterval of acceptance of one tested
hypothesis, degenerates into an empty set and decision is not made, since, in accordance with the condition of
the example, this measured value could be generated by both distributions with equal probabilities.

At 5.2,5.2 21  xx for Tasks 1, 2, 4 and for all considered W , the thresholds of  separating the
sub-regions of acceptance of both hypotheses or acceptance of neither hypothesis, coincide. In Task 7 these
thresholds are equal to the suitable thresholds of the previous tasks divided by two. This is easy to explain by
comparing the restrictions of Task 7 with the restrictions of Tasks 1, 2 and 4.

In Tasks 2 and 7, there takes place )2(
1

)2(
2 and (7) (7)

1 2  , because, in the appropriate restrictions,
identical values of  are used.

6. Conclusion
Obtained theoretical and computed of the practical example results clearly show the advantage of the

offered conditional Bayesian statements of testing many hypotheses. The introduced conditionality allows
impose restrictions on the errors of one type and, under such conditions, to minimize the errors of the second
type. Such opportunity is very important for correct solving many practical problems. For example, 1) air
defense – the cost of incorrectly detected target and the missed one is different, and defence interests demand
guaranteed detection of hostile flying vehicles; 2) identification of river water emergency pollution sources; 3)
medicine production – the cost of overdosing and underdosing is not identical and the safety of patients requires
guaranteed protection of prepared medicines against overdosing; 4) market investigation with the purpose of
making recommendations about investments - guaranteed protection from the loss of invested credits; 5)
revealing the fact of ship bending on the basis of the measurement results of special sensors; 6) the problem of
sustainable development of production and so on. The investigation of the stated problems proves their
uniqueness and high quality especially in specific situations when information is not sufficient for making
decision with given reliability.
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Table. The results of hypotheses testing by unconditional and conditional Bayesian tasks
Covarian
ce matrix

Mea-
sure-
ment
result

Unconditional task
Restriction level Accepted hypothesis Risk function Lagrange multipliers

W x 
iH

*r


1 2

1W 2.5,
2.5 2H 0.01695

2W 2H 0.04163

3W 2H 0.06632

1W 2.51,
2.51 2H 0.01695

2W 2H 0.04163

3W 2H 0.06632

1W 1.49,
1,49 1H 0.01695

2W 1H 0.04163

3W 1H 0.06632

Conditional tasks
Task 1

1W 2.5,
2.5

 0.01694
 0.01694
>0.01694

Both hypotheses are accepted
Both hypotheses are accepted
No hypothesis is accepted

0.01695 1.00074

2W  0.0416
 0.0416
>0.0416

Both hypotheses are accepted
Both hypotheses are accepted
No hypothesis is accepted

0.04166 1.00125

3W  0.06632
 0.06632
>0.06632

Both hypotheses are accepted
Both hypotheses are accepted
No hypothesis is accepted

0.06632 1.00002

1W 2.51,
2.51

 0.0163
 (0.0163,0.0175)

>0.0175

Both hypotheses are accepted

2H
No hypothesis is accepted

0.01699
( 0169.0 )

1.0048

2W  0.0406
 (0.04063,0.042)

>0.042

Both hypotheses are accepted

2H
No hypothesis is accepted

0.04179
( 04127.0 )

1.00634

3W  0.065
 (0.0651,0.0676)

>0.0676

Both hypotheses are accepted

2H
No hypothesis is accepted

0.06756
( 0651.0 )

1.02913

1W 1.49,
1.49

 0.0002
 (0.0002,0.244)

>0.244

Both hypotheses are accepted

1H
No hypothesis is accepted

0.01699
( 0169.0 )

1.0048
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2W  0.0018
 (0.0018,0.285)

>0.285

Both hypotheses are accepted

1H
No hypothesis is accepted

0.04176
( 0415.0 )

1.00516

3W  0.021
 (0.021,0.344)

>0.344

Both hypotheses are accepted

1H
No hypothesis is accepted

0.06664
( 066.0 )

1.00754

Task 2

1W 2.5,
2.5

 0.01694
 0.01694
>0.1694

Both hypotheses are accepted
Both hypotheses are accepted
No hypothesis is accepted

0.01695 0.5004 0.5004

2W  0.04193
 0.04193
>0.04193

Both hypotheses are accepted
Both hypotheses are accepted
No hypothesis is accepted

0.04164 0.5002 0.5002

3W  0.06632
 0.06632
>0.06632

Both hypotheses are accepted
Both hypotheses are accepted
No hypothesis is accepted

0.06632 0.5 0.5

1W 2.51,
2.51

 0.01636
 (0.01636,0.01755)

>0.01755

Both hypotheses are accepted

2H
No hypothesis is accepted

0.01699
( 0169.0 )

0.5024 0.5024

2W  0.0409
 (0.0409,0.043)

>0.043

Both hypotheses are accepted

2H
No hypothesis is accepted

0.04167
( 0419.0 )

0.5007 0.5007

3W  0.065
 (0.065,0.0676)

>0.0676

Both hypotheses are accepted

2H
No hypothesis is accepted

0.06634
( 0663.0 )

0.5002 0.5002

1W 1.49,
1.49

 0.00019
 (0.00019,0.244)

>0.244

Both hypotheses are accepted

1H
No hypothesis is accepted

0.01694
( 01695.0

)

0.4999 0.4999

2W  0.000187
 (0.000187,0.2857)

>0.2857

Both hypotheses are accepted

1H
No hypothesis is accepted

0.04167
( 0419.0 )

0.5007 0.5007

3W  0.00592
 (0.00592,0.311)

>0.311

Both hypotheses are accepted

1H
No hypothesis is accepted

0.06632
( 06632.0

)

0.5 0.5

Task 4
*G



1W 2.5,
2.5

 0.01694
>0.01694
 0.01695

No hypothesis is accepted
Both hypotheses are accepted
Both hypotheses are accepted

0.9830

0.9831

1.0008

0.9997

2W  0.04163
>0.04163

No hypothesis is accepted
Both hypotheses are accepted

0.9584
0.9584

1.0001
0.9997

3W  0.06632
>0.06633
 0.06633

No hypothesis is accepted
Both hypotheses are accepted
Both hypotheses are accepted

0.9337

0.9337

1.0000

0.9998

1W 2.51,
2.51

 0.01755
 (0.01637,0.01755)

>0.01755

No hypothesis is accepted

2H
Both hypotheses are accepted

0.9825
( 01637.0

)

>1
1.0609

<1

2W  0.0406
 (0.0407,0.0426)

>0.0426

No hypothesis is accepted

2H
Both hypotheses are accepted

0.9574
( 01637.0

)

>1
1.0373

<1

3W  0.0651
 (0.0651,0.0676)

>0.0676

No hypothesis is accepted

2H
Both hypotheses are accepted

0.9324
( 0651.0 )

>1
1.0291

<1

1W 1.49,
1.49

 0.000192
 (0.000193,0.2441)

>0.2441

No hypothesis is accepted

1H
Both hypotheses are accepted

0.9829
( 01679.0

)

>1
1.0160

<1

2W  0.00188
 (0.00188,0.28578)

No hypothesis is accepted

1H 0.9582
>1
1.0052
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>0.28578 Both hypotheses are accepted ( 0415.0 ) <1

3W  0.00592
 (0.00593,0.3116)

>0.3116

No hypothesis is accepted

1H
Both hypotheses are accepted

0.9334
( 066.0 )

>1
1.0075

<1
Task 7

1W 2.5,
2.5

 0.00847
>0.00847
 0.00847

No hypothesis is accepted
Both hypotheses are accepted
No hypothesis is accepted 0.98305 1.0007 1.0007

2W  0.0208
>0.0208
 0.0208

No hypothesis is accepted
Both hypotheses are accepted
No hypothesis is accepted 0.95834 1.0013 1.0013

3W  0.0331
>0.0331
 0.0331

No hypothesis is accepted
Both hypotheses are accepted
Both hypotheses are accepted 0.93356 1.0028 1.0028

1W 2.51,
2.51

 0.0081
 (0.0082,0.0087)

>0.0087

No hypothesis is accepted

2H
Both hypotheses are accepted

0.98244
( 00842.0

)

>1
1.0109

<1

>1
1.0109

<1

2W  0.0204
 (0.0204,0.0213)

>0.0213

No hypothesis is accepted

2H
Both hypotheses are accepted

0.95813
( 0207.0 )

>1
1.0091

<1

>1
1.0091

<1

3W  0.0325
 (0.0326,0.0338)

>0.0338

No hypothesis is accepted

2H
Both hypotheses are accepted

0.93336
( 033.0 )

>1
1.0075

<1

>1
1.0075

<1

1W 1.49,
1.49

 0.000096
 (0.000097,0.122)

>0.122

No hypothesis is accepted

1H
Both hypotheses are accepted

0.98301
( 00845.0

)

>1
1.0048

<1

>1
1.0048

<1

2W  0.00093
 (0.00094,0.142)

>0.142

No hypothesis is accepted

1H
Both hypotheses are accepted

0.95813
( 0207.0 )

>1
1.0091

<1

>1
1.0091

<1

3W  0.00296
 (0.00297,0.155)

>0.155

No hypothesis is accepted

1H
Both hypotheses are accepted

0.93336
( 033.0 )

>1
1.0075

<1

>1
1.0075

<1
СРАВНИТЕЛЬНЫЙ АНАЛИЗ БЕЗУСЛОВНОЙ И УСЛОВНЫХ
БАЙЕСОВСКИХ ПРОБЛЕМ ПРОВЕРКИ МНОГИХ ГИПОТЕЗ

Качиашвили К.И.1, Хашми М.А.2, Муиид А.3
Школа математических наук им. Абдус Салама Государственного Колледж-Университета,

68-B, Новый муслиманский город, Лахор, Пакистан
Резюме

В байесовской постановке задачи проверки многих гипотез, вместо безусловной проблемы
минимизации среднего риска, обусловленного ошибками первого и второго рода, предложено решить
условную оптимизационную проблему, когда ограничения наложены на ошибки одного типа и в этих
условиях минимизируются ошибки второго типа. В зависимости от типа ограничений рассмотрены
разные условные оптимизационные задачи. Для поставленных задач исследованы свойства областей
принятия гипотез и в конце осуществленно сравнение свойств безусловной и условных байесовских
методов. Результаты вычислений конкретных примеров подтверждают значимость теоретических
рассуждений.

mravali hipoTezis Semowmebis upirobo da pirobiTi

baiesis amocanebis SedarebiT

yaWiaSvili1 q.i., haSmi2 m.a. da muidi3 a. (pakistani)

reziume

hipoTezebis Semowmebis amocanis baiesis dasmaSi pirveli da meore tipis SecdomebiT

gamowveuli saSualo riskis minimizaciis upirobo amocanis nacvlad SemoTavazebulia pirobiTi

optimizaciis amocanis gadawyveta rodesac SezRudvebi dadebulia erTi tipis Secdomebze da am

pirobebSi meore tipis Secdomebi aris minimizirebuli. SezRudvebis saxeebisagan damokidebulebiT

ganxilulia pirobiTi optimizaciis sxvadasxva amocanebi. dasmuli amocanebisaTvis hipoTezebis

miRebis areebis Tvisebebi aris gamokvleuli da bolos upirobo da pirobiTi meTodebis Tvisebebis

Sedareba aris ganxorcielebuli. gamoTvlili magaliTis Sedegebi adastureben miRebuli Teoriuli

Sedegebis siswores.


