
Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

49

EVENT-STREAM SUBSCRIPTION SYSTEMS – COMPARING AND INTEGRATING
THE CONCEPTS OF ACTIVE DBMS, EVENT PROCESSING, DATA-STREAM SYSTEMS, AND

PUBLISH/SUBSCRIBE SYSTEMS
Meyer-Wegener Klaus, Daum Michael

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Summary

Complex-event processing (CEP) is a popular approach today. The term is often used in combination with
data-stream processing and publish/subscribe systems, although these systems have slightly different foci. The
root of many techniques used in all of these systems can be found in the literature on active database
management systems, which was mostly written in the nineties already. It now seems to be necessary to clarify
the differences of these approaches and to identify the application scenarios where each particular system fits
best. This article attempts to analyze the different kinds of event processing and to make their differences clear.
It concludes with the vision of a unifying approach.

Keywords: Event-processing systems. Data-stream processing. Active database management systems.
Publish/subscribe systems.

1. Introduction
The motivation behind event processing in computer systems is twofold: speed (quick reaction, real-time)

and expressivity (declarative languages).
Incoming events (usually messages) should not be stored and then later evaluated (e.g. byqueries), but

should be processed immediately, on-the-fly. Event processing promises the fastest reactions. However, events
very often are not just individual occurrences, but they need to be combined into more complex entities before
the decision on some kind of reaction is made. Such reactions can be just display, a warning or alert, or storage
(recording). An immediate action with effect on the real world is also possible, but in most applications human
control is more desirable.

Second, programming the reaction to incoming events should not be done in standard (imperative)
programming languages, but in some kind of declarative language with much more expressivity. One reason is to
improve flexibility: defining new reactions should be easy. Secondly, this increases the productivity of the
system developer. The third reason is the potential for optimization: a declarative language does not go into the
details of the implementation and thus leaves room for choosing an optimal way—which may vary over
time.There is a long tradition of language design for reactive systems, mostly coming from interactive systems,
i.e. handling user input. The earliest design we are aware of are Dijkstra'sGuarded Commands [1]. Here, the
emphasis is on the processing of incoming data elements (messages). As Luckham pointed out in his book on
complex-event processing [2], we are dealing with data objects signifying an event.

The philosophical discussion of what an event actually means is not repeated here. There is some
literature available on that, see [3] and the list of references in it. The starting point is a data object received by
the processing system. This data object always has some type that further describes its structure and its
properties, and there is also some additional information on the sequence of objects of the same type, e.g.
ordering or frequency. This is necessary for a proper definition of operations on the data objects.A typical
assumption in that definition of operators is that the recent past is more relevant than the long-gone past.

The open question remains how these systems should be designed and built. The available approaches are
quite different. The presentation starts with a short characterization of the four classes of systems that have
already been defined for event processing.

2. System Classes
2.1 Active Database Management Systems - "Trigger"

This is the oldest class of systems with a significant literature in the nineties; see for instance [4, 5]. The
specifics here are that events are typically database updates, i.e. inserts, deletes, and modifies. Having in mind
that all events are in fact data objects, this is not unrealistic. Usually, a generic event class has also been
introduced, together with some kind of "raise" operator that would explicitly state that the particular event has
happened. But the impression has always been that this is some kind of second-class event.

The problem of events being database updates is the speed of reaction: Each event must be stored first,
only then the processing of events can be triggered. The other classes of systems claim to be much faster.
Nevertheless, many problems of event processing have been discussed in much detail already in the context of
ADBMS. In particular, the event algebra [5] is quite useful up to date.

And the approach isstill popular today: Oracle'sContinuous Query Notification (CQN)has been used to
implement systems that would have been considered as prime candidates for data-stream processing [6].A
similar approach for the application of flight control has been taken in [7, 8]. While their processing is for sure
not as fast as possible, it is proven to be fast enough—and you do not need a second system!



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

50

2.2 Publish/Subscribe Systems - "(Content) Dissemination"
Publish/subscribe is rather a networking paradigm than an event-processing concept. It relates senders

and receivers, but that relationship is not fixed, it is based on content instead. Publishers send messages out to
the world which are characterized by some metadata (for the whole series of messages as well as for individual
messages). Subscribers use these metadata to connect to publishers and to receive individual messages.

Combination of published messages is limited.A publication creates a data object. Subscriptions define
queries that select those objects, but a combination of different messages into higher-level events is not in the
focus of these systems. Hence, filtering is by far the most important operation.

For a more detailed discussion see for instance[9]. It is based on [10].

2.3 Data-stream Processing - "Sliding Windows"

Data-stream processing is favored by the database community today. There is one important difference
with the active DBMS approach: The events, or rather the data objects, are not stored for a longer period of time.
The whole set of events that have occurred so far is not available. Instead, sliding windows consisting of
relatively small sets of recent events are maintained and evaluated. The benefit of the system is maximized if the
windows can reside in the main memory and are never written to secondary storage, i.e. to disks. For the
evaluation of the windows, database query languages are reused. The hope is that the enormous experience with
database query processing can be transferred to data-stream query processing.

Heterogeneity of the different proposals and prototypes turned out to be a significant problem, in
particular since the users are well aware of SQL as a standard. Many SQL dialects have been defined with little
differences in the syntax, but huge differences in the semantics. [11] has identified these differences
clearly.Apart from the SQL dialects, the other paradigm for the definition of data-stream queries is the use of
Boxes-and-arrows diagrams. It may be more intuitive for the users, but certainly adds a moment of procedural
definition to the queries. Also, the semantics of the operators drawn as boxes may be just as unclear as they are
in the SQL dialects. Windows can be defined per query or per operator. The evaluation can be triggered by the
input of new tuples as well as the elapse of time [12, 13].Our own approach called Data Stream Application
Manager (DSAM)[14]allows handling the heterogeneity, but it comes at the cost of a rather complex system with
partitioning and mapping of global queries.

[15] showed how data-stream processing can be traced back to "append-only" databases, which had been
introduced as early as 1992 [16].[17] provides an overview of the similarities that the Aurora data-stream
processing system shows with traditional database technologies. That broad overview also surveys active
DBMS.

2.4 Complex-event processing- "Temporal Correlation"

Luckham created the notion of complex-event processing (CEP) [2]. It has become very popular in
business computing today, see for instance [18]. However, the storage of all events is required. Luckham does
not use query languages, but relies on two additional markers of the event data: time and causality. The
evaluation is some kind of pattern matching that uses these markers. Complex events can be identified with the
help of time, e.g. two events that occur before or after each other, or with the help of causality, i.e. one event
occurs as a consequence of some other events having occurred before. Given the relations of the events at one
level of abstraction, a complex event at a higher level is defined as an aggregate of the related events.

This is much more general than data-stream processing. The latter can be regarded as a special case of
CEP with the data-stream elements representing events. Sensor-data fusion can also be seen as a special
application of CEP [19].

The following table summarizes the differences of the four classes of systems:

Table 1: Four Classes of Event-Processing Systems
Active DBMS Pub-Sub DSMS CEP

Data objects: updates of stored
data

publications
(messages)

data items (tuples),
messages

(basic, elementary)
events

Types: kinds of DB updates
(insert, delete, … )

publishers many streams (with
schema)

event types

Time: global order time synchroni-
zation

central time, global
order

Evaluation,
Analysis:

expressions, algebra subscriptions
(filters)

joins (queries) complex events,
expressions

Data base: event history streams up to now,
windows

event history (or
trace)

Latency: less important less important very important important
Storage: yes not needed no yes



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

51

3. Combined Approaches

Cayuga [20, 21] tries to combine the techniques of publish/subscribe and event processing. It does,
however, not try to be a data-stream processing systems and accepts that its query-processing power is limited.
The operators like "next" and "fold" are very intuitive and easy to implement with a clear semantics, but they are
not very powerful and thus cannot really justify the employment of a generic system.

The desired expressivity of the query language remains to be determined: What kinds of evaluations are
really required? The two available benchmarks, namely Linear Road [22] and NEXMark [23], provide the best
general definition of requirements. Yet, there is no theoretical definition so far that would be generally accepted.

4. Integration Steps

In the examination of existing event-stream models, we regard the following criteria as relevant for a
classification:

 Timestamps and validity.
Most stream-processing systems (SPSs) use timestamps to denote when an event has happened.

Timestamps may be generated by the data sources (external timestamps) or by the SPS upon arrival of an event
item (internal timestamps). A second timestamp may be added to denote how long an event is valid. Timestamps
can be part of either the user data or the metadata. In the first case, queries may access (and possibly even alter)
timestamps. In the second case, timestamps can only be used by the SPS internally.

 Uniqueness of items.
Stream models differ in their guarantees for the uniqueness of items. It is usually not possible to

guarantee uniqueness of user data (e.g. a sensor node may return the same temperature value several times). If
uniqueness of items is required, this has to be done via timestamps. In the absence of timestamps or if
timestamps do not guarantee uniqueness (e.g. because of insufficient granularity), a simple sequence of numbers
may be used. Uniqueness is usually more of a concern for the mathematically precise definition of semantics
than it is for actual query processing.

In addition to stream models, existing SPSs also differ in their delivery semantics.The following criteria
may be used to distinguish systems:

 Lost or duplicated items.
Systems may react differently to lost or duplicated items. Unless there is a notion of a "next" item (e.g. by

means of sequence numbers), it is not possible to detect whether tuples have been lost.
 Ordering.
Another interesting difference between SPSs is the issue of ordering. For a data source with either

timestamps or sequence numbers, it is possible to wait for out-of-order items and to reorder them. This can be
realized by different SPS-specific techniques like sorting with slack parameters, heartbeats, punctuations, or k-
constraints. If more than one data source is connected to an SPS, reordering depends on synchronized clocks.

Schmidt [24] distinguishes three kinds of data-stream characteristics as depicted in Fig. 1.
Figure 1: Three Kinds of Data-stream Characteristics [Schmidt2007]

a) continuous:
Continuous values can be turned into a data stream by sampling. A typical example would be temperature

measurement or motion tracking. According to the needs of the application, the sampling rate can be adjusted,
e.g. to save energy. Interpolation can be useful to estimate values during the time interval of two subsequent
measurements.

b) discontinuous:
Discontinuous values often relate to state changes, but not always. An example would be prices for

goods. Here, every change should be entered into the system; otherwise false conclusions might be drawn.
"Interpolation" is easy because the value remains the same until the next event.

c) (instant) event:
This use of "event" refers to singular appearances of conceptually independent elements. A typical

example would be a sales transaction. Nothing important takes place in between two subsequent events.
The kind of event stream given significantly affects the meaning of operations applied to it. Just consider

the meaning of something like average. In the case of continuous values, the evaluation can modify the number
of events by adjusting the sampling rate. This is not possible for the other two kinds of streams. Operations can
also turn one kind of stream into another, e.g. a threshold operator on a continuous-value stream can be used



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

52

generate a discontinuous-value stream. Sampling on discontinuous-value stream would be an option, but leads to
different semantics and most likely creates imprecision, because some of the change events may be missed.

For event-based systems, immediate event processing is appropriate in most cases.Results can be either
triggered or they appear periodically.Anintegrated approach must give precise answers the following questions:

 What triggers a result ?
 Which data-stream element or events are relevant for a result ?
In contrast to active databases and publish/subscribe systems, CEP systems and data-stream processing

correlate sets of events or data-stream items, respectively.Since it is more than the single event that counts, the
precise definition of sets of elements and the appropriate point in time for creating a result are crucial. Data-
stream systems use the concept of (virtual) data-stream elements as fixed points that define a sliding window as a
continuous segment of the data stream. CEP systems use user-defined descriptions instead that define the set of
events and how these events matter for the result.

5. Conclusion
A unifying approach for event-stream processing must regard all aspects of the different models, i.e. the

meaning of a data-stream item or event, respectively.In DSAM, we currently use a minimalistic model [14], so
our approach is limited to the intersection of the capabilities of our model and the capabilities of the models of
the systems that DSAM integrates.In our future work, we will extend our minimalistic model to a model that is
as holistic as reasonable.

Query languages should regard all aspects of users' needs.Of course, the expressivity of a query language
is limited by the underlying model.Some domains can use temporal windows, while other applications need
ordered sequences. The search for simple, yet powerful event-stream model with a declarative, concise query
language has only begun.

References:
1. DijkstraE.W. Guarded commands,nondeterminacy and formal derivation of programs. Communications of

the ACM, 1975, Vol. 18, No. 8, pp. 453-458.
2. Luckham D. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise

Systems. Amsterdam: Addison-Wesley Longman, 2002.
3. Lenz R., Schuster H., Wedekind H. Design of (re-)active systems using triggers with complex events. In:

Arbeitsberichte,Institut für Mathematische Maschinen und Datenverarbeitung (IMMD), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Erlangen, September 1993, Vol. 26, pp. 95-102.

4. Dayal U., Buchmann A.P., Chakravarthy S. The HiPAC project. In: Active Database Systems. Under
editionWidom J., Ceri S. Chapter 7.San Francisco: Morgan Kaufmann, 1996, pp. 177-206.

5. Gehani H.H., Jagadish H.V., Shmueli O. Event specification in an active object-oriented database. In: Proc.
2002 ACM SIGMOD Int. Conf. on Management of Data (Madison, Wisconsin, USA, June 3-6). Under
editionFranklin M.J., Moon B., Ailamaki, A. ACM, 2002, pp. 81-90.

6. ChandyK.M., Gawlick, D. Event processing using database technology (tutorial). In: Proc. 2007 ACM
SIGMOD Int. Conf. on Management of Data (Beijing, China, June 12-14). Under editionChan C.Y., Ooi B.C., Zhou
A. ACM, 2007, pp. 1169-1170.

7. Behrend A., Dorau C., Manthey R., Schüller G. Incremental viewbased analysis of stock market data
streams. In: Proc. 12th Int. Database Engineering and Applications Symp. (IDEAS, Coimbra, Portugal, Sept. 10-12).
Under editionDesai, B.C. ACM, 2008, Vol. 299 of ACM Int. Conf. Proc. Series, pp. 269-275.

8. Behrend A., Dorau C., Manthey R. SQL triggers reacting on time events: An extension proposal. In: Proc.
13th East European Conf. on Advances in Databases and Information Systems (ADBIS, Riga, Latvia, Sept. 7-10).
Under editionGrundspenkis J., Morzy T., Vossen G. Springer, 2009, No. 5739 in Lecture Notes in Computer Science,
pp. 179-193.

9. Zhou Y., Aberer K., Salehi A., Tan K.-L.Rethinking the Design of Distributed Stream Processing
Systems.In: Proc. 24th Int. Conf. Data Engineering Workshops (Cancun, Mexico, NetDB 2008), IEEE Computer
Society, 2008, pp. 182-187.

10. CarzanigaA., Wolf A.L. Content-based Networking: A New Communication Infrastructure. In: Proc. NSF
Workshop on an Infrastructure for Mobile and Wireless Systems. In conjunction with: Int. Conf. on Computer
Communications and Networks (ICCCN. Scottsdale, AZ, Oct.). 2001.

11. Jain N., Mishra S., Srinivasan A., Gehrke J., Widom J., Balakrishnan H., Cetintemel U., Cherniack M.,
Tibbetts R., Zdonik S. Towards a streaming SQL standard. In: Proc. 34th Int. Conf. on Very Large Data Bases
(VLDB, Auckland, New Zealand, August 23-28). VLDB Endowment, 2008, Vol. 1 of Proc. of the VLDB Endowment,
pp. 1379-1390.

12. Ghanem T.M., Hammad M.A., Mokbel M.F., Aref W.G., Elmagarmid A.K. Incremental evaluation of
sliding-window queries over data streams. IEEE Trans. on Knowl.and Data Eng. 2007, Vol. 19, pp. 57-72.

13. Kopetz H. Event-triggered versus time-triggered real-time systems. In: Proc. Int. Workshop on Operating
Systems of the 90s and Beyond (London, UK). Springer-Verlag, 1991, pp. 87-101.

14. Daum M., Lauterwald F., Fischer M., Kiefer M., Meyer-Wegener K. Integration of heterogeneous sensor
nodes by data stream management. In: Wireless Sensor Network Technologies for the Information Explosion Era.



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

53

Under edition Hara T., Zadorozhny V.I., Buchmann E. Berlin Heidelberg: Springer, 2010, No. 278 in Studies in
Computational Intelligence, pp. 139-172.

15. Babcock B., Babu S., Datar M., Motwani R., Widom J. Models and issues in data stream systems (PODS
invited talk). In: Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (PODS,
Madison, Wisconsin, USA, June 3-5). Under editionPopa L. ACM, 2002, pp. 1-16.

16. Terry D., Goldberg D., Nichols D., Oki B. Continuous queries over append-only databases. In: Proc. 1992
ACM SIGMOD Intl. Conf. on Management of Data, June 1992, pp. 321-330.

17. Carney D., Cetintemel U., Cherniack M., Convey C., Lee S., Seidman G., Stonebraker M., Tatbul N.,
Zdonik S. Monitoring streams - a new class of data management applications. In: Proc. 28th Int. Conf. on Very Large
Data Bases (VLDB, Hong Kong, China, August 20-23).Morgan Kaufmann, 2002, pp. 215-226.

18. Mühl G., Fiege L., Pietzuch P. Distributed Event-Based Systems. Springer, 2006.
19. Nakamura E.F., Loureiro A.A.F., Frery A.C. Information fusion for wireless sensor networks: Methods,

models, and classifications. ACM Computing Surveys 2007, Vol. 39, No. 3.
20. Demers A., Gehrke J., Hong M., Riedewald M., White W. Towards expressive publish/subscribe systems.

In: Advances in Database Technology - Proc. 10th Int. Conf. on Extending Database Technology (EDBT, Munich,
Germany, March 26-31). Under edition Ioannidis Y.E., Scholl M.H., Schmidt J.W., Matthes F., Hatzopoulos M.,
Böhm K., Kemper A., Grust T., Böhm C. Springer, 2006, Vol. 3896 of Lecture Notes in Computer Science, pp. 627-
644.

21. Demers A., Gehrke J., Panda B. Cayuga: A general purpose event monitoring system. In: Proc. 3rd Biennial
Conf. on Innovative Data Systems Research (CIDR, Asilomar, CA, USA, January 7-10). www.cidrdb.org, 2007,
Online Proceedings, pp. 412-422.

22. Arasu A., Cherniack M., Galvez E.F., Maier D., Maskey A., Ryvkina E., Stonebraker M., Tibbetts R.
Linear road: A stream data management benchmark. In: Proc. 30th Int. Conf. on Very Large Data Bases (VLDB,
Toronto, Canada, August 31 – Sept. 3). Under editionNascimento M.A., Özsu M.T., Kossmann D., Miller R.J.,
Blakeley J.A., Schiefer K.B. Morgan Kaufmann, 2004, pp. 480-491.

23. Tucker P., Tufte K., Papadimos V., Maier D. NEXMark – A Benchmark for Queries over Data
Streams.DRAFT.OGI School of Science & Engineering at OHSU, 2002.URL
http://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf.

24. Schmidt S. Quality-of-Service-Aware Data Stream Processing.Ph.D. thesis, TU Dresden, 2007.

ПОДПИСНЫЕ СИСТЕМЫ ПОТОКА-СОБЫТИЙ - СРАВНЕНИЕ И ИНТЕГРАЦИЯ ПОНЯТИЙ
АКТИВНЫХ СУБД, ОБРАБОТКИ СОБЫТИЙ,  СИСТЕМ ПОТОКА-ДАННЫХ, И  СИСТЕМ

ПУБЛИКАЦИИ/ПОДПИСКИ

Меиер-Вегенер К., Даум М.
Университет Ерланген-Нюрнберг, Германия

Резюме
Обработка  сложных  событий является актуальным подходом на сегодняшний день. Термин часто

используется в сочетании с обработкой  потока данных и системами публикации/подписки, хотя эти
системы имеют немного разные фокусы.  Основу многих методов, используемых во всех этих системах
можно найти в литературе по активным системам управления базами данных, которые  были описаны
уже в девяностых годах. Необходимо уточнить различия этих подходов и идентифицировать прикладные
сценарии, где каждая конкретная система подходит лучше всего. В этой статье сделана попытка
проанализировать различные виды обработки событий и сделать эти различия очевидными. Это
проявляется в видении единого подхода.

movlenaTa nakadebis xelmoweriTi sistemebi – aqtiur monacemTa bazebis,

movlenaTa damuSavebis, monacemTa nakadis da gamocema/xelmoweris sistemebis

cnebaTa Sedareba da integracia

klaus meier-vegeneri, mixail daumi

erlangen-niurnbergis universoiteti, germania

reziume

rTuli movlenebis damuSaveba aqtualuri midgomaa dReisaTvis. termini xSirad gamoiyeneba

monacemTa nakadis damuSavebasa da publikacia/xelmoweris sistemebTan erTad, Tumca maTi fokusebi

gansxvavebulia. am sistemebSi gamoyenebadi bevri meTodis safuZveli SesaZloa vipovoT monacemTa

bazebis marTvis aqtiuri sistemebis Taobaze arsebul literaturaSi, romlebic ukve 90-ian wlebSi gaCnda.

aucilebelia am midgomaTa sxvaobis dazusteba da gamoyenebiTi scenarebis identificireba, sad ra konkretuli

sistema ukeT esadageba. gadmocemulia movlenaTa damuSavebis sxvadasxva saxeobis analizisa da am sxvaobaTa

karavebis mcdeloba. es vlindeba erTian midgomaSic.

www.cidrdb.org
http://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf

