
Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

341

GENETIC ALGORITHM AND UNIVERSITY TIMETABLE PROBLEM
B. Midodashvili1, L. Midodashvili2, P. Midodashvili3

1-I. Javakhishvili Tbilisi State University
2-Gori University, Georgia.

3- Ilia State University, Tbilisi
Summary

Scheduling university timetable is a complex NP-hard problem, which is usually done “by hand”, taking
several days of routine work. There are known many attempts to solve this problem using classical methods, such as
integer programming and graph theory algorithms. These methods are inconvenient to algorithmize the process of
solution. We offer a solution to this problem using appropriately configured genetic algorithm. The program
presented by authors, using real university data stored in a SQL database, successfully solves the university timetable
problem.

Keywords: genetic algorithm. Timetable problem. Optimization. Computer program.

1. Introduction
Timetable problems occur in cases when certain resources must be specifically allocated to time period slots

(airport terminal and railroad station scheduling, conference timetabling, job scheduling, etc.). University timetable
problem is a problem of assigning courses to time periods and to rooms, satisfying various constraints and objectives.
In general, the constraints may be hard constraints, i.e. conditions which must be necessarily fulfilled, or soft
constraints, i.e. conditions which satisfaction can be assumed as expectations.

Timetable problems belong to a class of combinatorial type NP-hard constrained optimization problems,
which main goal is to satisfy all problem constraints, rather than optimizing a certain objective [1]. Automated
algorithm of the solution of timetable problems is of great importance, as it can save a lot of work to institutions and
companies.

Many authors have proposed different methods for solving timetable problems. These methods come from
such scientific disciplines as Operations Research, Artificial Intelligence and Computations and they can be divided
into four categories [2]:

 Sequential Methods: graph problem method of ordering of events using domain-specific heuristics without
constraint violations.

 Cluster Methods: constructing event sets satisfying the hard constraints as well as soft constraints which are
then assigned to real time slots.

 Constraint Based Methods: modeling the problem into a set of variables (events) to which values (resources
such as teachers and rooms) are assigned by satisfying a number of constraints.

 Meta-heuristic methods: nature-inspired processes such as genetic algorithms (GAs), simulated annealing,
tabu search, and other heuristic approaches that are applied to solutions or populations of solutions, in order
to evolve them towards optimality.

As the authors of work [3] report, while various methods like tabu search, simulated annealing, network flow,
graph coloring, etc, have been on the play, genetic algorithms prove more effective in solving timetable optimization
problems.

2. Genetic algorithm
Genetic Algorithm (GA), developed by John Holland [4], is a robust and efficient search and optimization

techniques inspired by the Darwin's theory of natural evolution; the original goal for the research was to explain the
adaptation of natural systems and to design artificial system that retains mechanism of natural systems.

The evolution process in the genetic algorithm is done with a population of individuals represented by
chromosomes, parameters encoded to the string, bits or other data representation.

Since the first population does not have the final or “good enough” solution, there is a need for keeping an
artificial diversity in the population. Diversity can be maintained by using the crossover and mutation operations.

The crossover in the natural evolutionary process means that child will inherit its properties (genes) from its
parents. In genetic algorithms, the crossover operation is needed to mix and inherit good gene combinations from the
current population to the new population.

The mutation is performed by applying a random change to the individual’s chromosomes. A mutation
usually affects only few genes.

Usually the genetic algorithm performs with the following cycle:
1. Evaluate the fitness value for all the individuals in current population.

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

342

2. Create new population by using crossover; mutation and reproduction operations.
3. Discard the old population and continue iteration.

3. Implementation of the genetic algorithm for university timetable problem
The objects of the offered genetic algorithm consist of the following:
 Professor - with ID and the name.
 Students Group - with ID and the number of students (size of group)
 Classroom - with ID and the name of the classroom, as well as the number of seats and information about

equipment (computers).
 Course - with ID and the name of the course.
 Subject - with ID and the name of the subject.
 Class - with a reference to the subject and course to which the class belongs, a reference to the professor

who teaches, and a list of student groups that attend the class. It also stores how many seats (sum of student
groups' sizes) are needed in the classroom, if the class requires computers in the classroom, and the duration
of the class (in hours).

We consider only hard constraints consisting of the following:
 A class can be assigned to a free room.
 No professor or student group can have more than one class at a time.
 A room must have enough seats for all students.
 The room must have equipment (computers) if the class requires it.
If the total number of classes is L, then a chromosome for a class schedule is represented by hash-table with L

items, where for each item the key is the Class ID (integer from 1 to L) and the value is the number of the time-space
slot in the vector, to which belongs the first hour of this class (integer from 1 to working_days * number_of_rooms *
classes_per_day).

The fitness of the chromosome is calculated as follows:
 Each class can have 0 to 8 points.
 If a class uses a free room, we add 1 to its score.
 If a class requires equipment and the room assigned to is equipped, we increment the score of the class.
 If a class is located in a room with sufficient number of seats, we increment its score.
 If a professor has no other classes at the time, we increment the class's score.
 If any of the student groups that attend the class has no other class at the time, we increment the score of the

class.
 If duration of the class is one hour or all time-space slots of the class with duration exceeding one hour are

allocated in one working day, we increment the score of the class.
 If preferred room of the class is not pointed or if it coincides with preferred room, we increment the score of

the class.
 If preferred University Building of the class is not pointed or if it coincides with preferred University

Building, we increment the score of the class.
 The total score of a class schedule is the sum of points of all classes.
 The fitness value is calculated as schedule_score/maximum_score, where maximum_score is

total_number_of_classes * 8.
The fitness value is in the range 0 to 1.
A crossover operation combines data in the hash-tables of two parents, and then it creates a new hash-table. A

crossover 'splits' hash-tables of both parents in parts of random size. The number of parts is defined by the number of
crossover points (plus one) and in our case it is 2. Then, it alternately copies parts from parents to the new
chromosome.

A mutation operation takes a class randomly and moves it to another randomly chosen slot. The number of
classes which are going to be moved in a single operation is defined by the mutation size and in our case it is 2.

For each generation, consisting of N=100 chromosomes, the algorithm performs the next operations:
1. Selects N/5 best chromosomes of the population.
2. Randomly selects N/5 pairs of parents from the current population, produces N/5 new chromosomes by

performing a crossover operation on the pair of parents and replaces randomly selected N/5 not best
chromosomes in population.

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

343

3. N/5 times randomly selects 2 pairs of parents from the best chromosomes of the population, produces new
chromosome by performing a crossover operation on the pair of parents and replaces randomly selected not
best chromosome in population

4. Randomly selects N/5 chromosomes from remaining chromosomes, performs mutation with mutation
size=2 and replaces randomly selected N/5 not best chromosomes in population.

The algorithm is repeated until the best chromosome reaches a fitness value equal to 1.

4. Conclusions

The algorithm described above has been applied to the program written in VB.NET using university data
stored in a MS SQL 2008 database and successfully tested with different parameter values. In contrast to known to
us works, together with best chromosomes in each generation we necessarily retained their offspring (operation 3 of
the algorithm). This circumstance is a certain analog of natural evolution of natural systems. As experiments showed
this approach sharply decreases a number of generations needed for receiving a solution.

Genetic algorithms appear to find a good solution for university timetable problem, however the rate of the
algorithm highly depends on the way the problem is encoded and which crossover and mutation methods are used.

References:

1. Brailsford S.C., Potts C.N., Smith B.M. Constraint satisfaction problems: Algorithms and applications.
European Journal of Operational Research, vol. 119, 1999. pp. 557–581

2. Kazarlis S., Petridis V., Fragkou P. Solving University Timetabling Problems Using Advanced Genetic
Algorithms. Proc. 5th Int. Conf. on Technology and Automation, Thessaloniki, Greece, 2005, pp. 131-136

3. Nandhini M., Kanmani S., Gilbert S., Theepan S., Venkatesan K. Automated Course Timetabling Using
Gam-6. Intern. Conf. On Information Science And Applications, ICISA 2010, India, 2010

4. Holland J. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor. 1975.

genetikuri algoriTmi da universitetis saswavlo cxrilis problema

biZina midodaSvili1, levan midodaSvili2, p. midodaSvili3

1-iv. javaxiSvilis sax. Tbilisis saxelmwifo universiteti,

2-goris universiteti, 3-ilias saxelmwifo universiteti

reziume

universitetis saswavlo cxrilis Sedgena warmoadgens NP-rTul problemas da misi gadaWra,

Cveulebriv, xorcieldeba `SeuiaraRebeli xeliT”, rac moiTxovs arcTu xanmokle daZabul Sromas.

cnobilia aRniSnuli problemis klasikuri meTodebis gamoyenebiT gadawyvetis araerTi mcdeloba,

magram aseTi meTodebi araa mosaxerxebeli amoxsnis miRebis procesis algoriTmizaciisaTvis. avtorebis

mier warmodgenilia programa, romelic iyenebs realuri universitetis Ms SQL monacemTa bazaSi

Senaxul monacemebs da warmatebiT wyvets universitetis saswavlo cxrilis problemas.

ГЕНЕТИЧЕСКИЙ АЛГОРИТМ И ЗАДАЧА СОСТАВЛЕНИЯ РАСПИСАНИЯ ЗАНЯТИЙ В
УНИВЕРСИТЕТЕ

Мидодашвили Б.1, Мидодашвили Л.2, Мидодашвили П.3

1-Тбилисский Государственный Университет им. Ив.Джавахишвили,
2-Горийский Университет, Грузия

3-Государственный Университет им. Ильи, Тбилиси
Резюме

Задача составления расписания занятий университета является NP-сложной задачей, которая обычно
выполняется "вручную", занимая несколько дней рутинной работы. Известны многие попытки разрешить
эту задачу с использованием классических методов, таких как целочисленное программирование или теория
графов. Эти методы неудобны с точки зрения алгоритмизации процесса решения. Мы предлагаем решение
этой задачи с использованием генетического алгоритма конфигурированного соответствующим образом.
Программа, представленная авторами, используя реальные данные университета, которые хранятся в базе
данных Ms SQL, успешно решает задачу расписания занятий университета.

