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Summary

The paper deals with a simple unifed algorithm for construction of absolutely stable economical
schemes to solve multidimensional parabolic type equations, where each difference equation completely
approximates the given differencial equation. It is wortly to note that for the first time the constructed
schemes are dependent on the dimension p only (they are not dependent on the weight).
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Introduction

It is well-known that for multidimensional partial differential equation problems, the issue of
construction of unified economical algoritms is related with considerable difficulties. Nevertheless, today
exist numerous finite difference schemes of which one can single out those obtained by the upper layer
factorization of the operator, those obtain by the method of summable approximation, etc.

The finite difference schemes which are now known as “alternative direction sweep” method was
suggested first in 1955 simultaneously by Peaceman, Rachford and Douglas in [1,2]. These papers have
become a basis to develop absolutely stable schemes (the so called economical schemes). Afterwards the
schemes have been extended and deepened by Dougqlas, Rachford, Baker, Oliphant, Brian, Samarshi,
Yanenko, Marchuk, Gordeziani and others. We refer the reader to papers and the bibliography therein [3-
51

One of the peculiarities of the proposed algorithm is that each of the difference equations
completely approximates a given differential equation. The latter enables us to define uniquely the
boundary conditions ou the grid. Concerning this fact in comparison with other schemes see [5, §2,9].

It is well-known that in general difficulties occered in construction of simple (economical)
absolutely stable schemes can not be avoided in the framework of schemes with homogeneous and simple
approximation.. When the integration from a step to step is homogeneous, the structure of the difference
scheme is to be changed. The latter complicates the approximation . In our case these two related
problems are reduced just to the choice of the structure of the finite difference scheme, without causing
any complications in approximation. Besides the proposed method allows to write down new schemes for
an arbitrary dimension p. In particular, when p=1, p=2 and the right-hand side of the equation vanishes,
we get respectively the Krank-Nikolski and Douglas-Rachford schemes (see[1-5]).

For simplicity cousider the case of constant coefficients. Although with minor changes everything
below can be stated for the case of a general second order equation with non-constant coefficients.

1. Setting of the problem, variation problem
and difference schemes

Consider the first initial-boundary problem for a p-dimensional heat conductivity equation, where
ou L d%u
EzLu+f, Lu=>) Liu, Liuzax— xeG, te(0,T] (1.1)

2 9
i=l1 i

u/r=0, u(x,0)=u,(x) (1.2)
Let G=Gop be p-dimensional cube 0<x;<1, i= G o, = {(ilhl ,...,iphp)e G}

1 _ .
be the cube type net with the step h with respect to the variable x;, h = N— , @7 -be the net with the step
1

T
T =—— on the interval 0<t<T.
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Let us consider first the algoritm of the construction of schemes for p=1,2. After established the rule
we can write it in general case of arbitrary p.
To this end we rewrite equation (1.1) in the form

ou o 0? 0?
—+ ;l: B+B 121 + Bf, (1.3)
ot ot ot 0X

where B is a so far, not yet defined nonzero real number. In the sequel, both the stability and

approximation of finite difference schemes will be dependent just on the selection of B and weight a.
In order to define u(xy,t), instead of problems (1.3) - (1.2), let us apply the well-known Hamilton

th (1 2 2n ) 2 . 2
o) R
ot ot 2n; 45 NI "\ 0lin
to L0 ! (1.4)
<i>ﬁ ou
b ol Olin

Le. if the function u(xy,t) is the solution to the given problem, then it provides the minimal value

principle:

}—ZBfu}dxl}dt — min

for the functional I(u) in any time interval tn —t0 (t0=0).
If we devide the time interval by the small tj —tj-1, j=1,n , than we can rewrite the condition (1.4)
in the following form

1) = Y 15(u) - min
=

41 2 2o [, 2 i 2 i
Ij(u): j j Bu@'i_(@j +L A()(ﬂj +B()( ou j +C()ﬂ ou _2Bfu dx dt
ot ot 2n, & ol '\ 0l Vol 0w

ti—1 L0

where

(1) cos® o,y +Psin’ oy B[ij cos’ a; + Bsin’ o
= 5 1 =

1

A

)

Sinz((xm —(Xi) Sinz(om1 _ai)

- 2(c0s o cosa,, + PBsin o sin ocm)

cl) =
1 sin? (oL, — o)
We note, that functional (1.4) is the identical representastion of the following functional

th [ 1 2
ou ou
I(u): J. J.|:ug—(a—x1) —2ﬁ1:|dX1 dt
to LO

The directions Z are defined by means of the angles a; as follows :

f = (flaKZa"'aKZm ):> ((xla(XZa"'a(xan )7 O('nl+i = TE+(X,1', b=~

-0,
! "+

iZl,Ill

Let us consider one of the above possibilities. Namely when in the elementary cell containing a
basis knot (x;, tj) (it is a rectangle with the centroid (xi,tj) the four directions 7, 1= ﬁ (n1=2) get out
from the point (xivtj)v where

] =7 -0y, O3—0,=20,, O4—0;=T—20;, O] —0y =20, O} =2T+0,.

Here o is the counterclockwise angle between the axis ox; and the direction /; .

219



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(6), 2009

Let us exploit the mean value formula and write down the difference functional (with respect to

h T h T h T
basis knot (x;,t;) and to the fictitious knots (x;+— ,t;+ — ), (X;- — , t;+— ), (X;-— ,t; - — ), (x;+
(Xi) (57 5 (i G G e ) (5
h . .
7 tj - %) , Where 1 is the net step along the T axis, t = jT, j=0,1,...; while h is the step along the ox
axis) corresponding to the functional (1.4). We call the knots to the fictitius, since the values of a function
in the finite difference schemes are not involved because they are cancelled.

In the sequel we leave the same notation U for the net function

+1

(xi.tj)

I ( )_ E ( n ’)+( 2+ 2) +li[A(l) 2 +B(i) 2 n
h\u)= 2u Ut ut Ut u; 4 1u£i 1u/ﬂ
i=1 !
(1.5)

. 4 .
+C1(1)u£, u, } > CHugug,,
1 i+1 (Xi,t .

1
i ) " Z (i—l j(xi +g,tj+%) ..... (xa +g,tj—%)

where S0=4ht, is the area of elementary cell. We use the folloving notations :

_u(xi +h,tj+r)—u(xi,tj) ( ) )( )_u(xi,tj)—u(xi —h,tj—r)
? 00/ (xi4t

u‘l Xitj)
N

h* +1°
u(Xi+hatj)_u(Xiatj) U(Xi,tj)—U(Xi—h,tj)
llX. = , uii = R
' h h
Ux +Uux u(xi,tj+r)—u(xi,tj) u-u
Uo s —— ut: = B
X 2h T T
u{ZU(Xi,tj)—U(Xi,tj—T):u—ﬁ’ uo:ﬁ_ﬁ
T T t 27

in to functional (1.5) and writing it in a

—_
N

Inserting the values of coefficients A

expanded form, we obtain
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1 cos”ay +Psin’ a [( 2 2
0 14 1%

Iy (u) = {[gu(ut ru)+ (2 +u§)}

(xi,tj) 4 Sil’lz(OCi+1 _ai)

2(cos2 oy —Psin? ocl) 2 2 2(cos2 o —Bsinzocl) 2 2
+ 7 ) upUy, |+ u/ +u/ + 7 ) Us,Ur; |+ u/ +u/ +
cos” o +PBsin” o 2  cosTay +Bsin” o " e

2(cos2 o —Bsin’ ocl) 2 2 2(cos2 o —Bsinzocl)
+ UspsUy, |+ 1]./1 +u  + Uy Uy, +
(xi.tj)

cos” oy +Psin? oy 4 cos® ay +Psin’ oy

2 - 2
COS O —pSIm— oy
+2 B

. — (uz;uu—uz;uz;)(,;i+h,tj+1j+
cos” a +PBsin” o 2772

2 - 2
COS O —pSI— oy
+2 B

. — (uz;uu—uzluz4)(,ﬁ_h,tj+1j+
cos” a +PBsin” o 272

2 - 2
COS O —pSIn— oy
+2 B

(ullu/fz — Uy Uy, )( h Tj +

Xi——,tj——
2 il

cos® o +Psin? o 2

2 - 2
COS O —pSIm oy
+2 B

Uy, —Upug ), b 1) =2 (ﬁl . }SO
cos2a1+[3sin2oc1( e 3)( ot 2] Bty 15)

Here are taken into account the follouving equations :
o) -0 =Tc-20c1’ a3 -op =20, og -03 =Tc-20c1’ o - o4 =201, o =2nt+oq
sin? (a4 -oci):sin2 20 ,i=14;
(ap =n-a] a3 =ntay oy =27- o)

If we insert the values of difference operators in the obtained functional, use the Hamilton principle
and carry out elementary but routine work, then we obtain the following difference scheme with respect
to the basic knot point (xi,tj)

h>+pt> (2 +77fh? +Br?)
o + U = > (w7, +ups, )—
t 2pBh B-(27h)

Uxx; + fij,

After a few transformations we can rewrite it in the following cannonical form

u(t) +’C2Rut{ =uxx, +f , (f:f(Xi,tj):fij) s (1.6)
where
h2 + 2
R="FPT Lo AL Awsu.
4Bt

2

1 h
If in scheme (1.6) we replace B by B =—— , then we get the equivalent to (1.6) scheme, which
c T

we call o-parametric basis scheme
uo +01t’Rug = uxx, +f (1.7)

where c:1+0 >0, (cil).
4 4
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2 A2
2. Finite difference schemes for the equation a = 8—121 +f.
i=1 8Xi
By analogy with the derivation of the scheme (1.7) let us consider the following identical
representations for the given equation

ou o*u o*u o*u o*u
—+ = + + +Bf (2.1)
Bat ot (atz Baxfl&) Baxi P
ou 0%u 0*u 0*u 0’u
= + +B—+Pf 2.2)
ot ot (&2 Béﬁj@) P : P
2 2 2 2 2
B@+2al;: 0 ll+[36121 + 6—121+ 6—121 +Bf . (2.3)
ot ot ot OXi )5, \ Ot 0X2 )5,

Similarly as in one-dimensional case we use the mean value formula and write down the difference
functionals corresponding to the equations (2.1) - (2.3) in the elementary cell of dimensions (2h, 2h , 2t )
with respect to the centroid (xyj, X2, tk)s

lin(u)= {[gu(ur +u)+ (ol +uf)}

I~K[ 6 2 M
+— E A u +B u +

o 4 4 1 li 1 .
(x1i,X2j,tk ) i=1 i+l (2.4)

() 2 2 }v
+ Cl Ui Uy ](51) _B(uXZ +u§2 )(Xli,xzj,tk) _2B(ﬁl)(x1i,x2j,tk) 0

Lon (u)= {[gu(ut rup)+ (u? +u? )}

1A 0 2 0,
+— E A u +B u +
4 4 17 ¢ 17y
)T e (2.5)

(x1i,%2j,tk

(i) 2 2 }v
+ C1 RYAL Y ](52) - B(u a T Ux )(x“,xzj,tk) - 2B(ﬁ1)(xn=><2j=tk) 0

Isn(u) = {[gu(ut +up)+2(u? +uf)}

0.
(x1i,x2j,tk ) k=1 i=l i+l (2.6)

(i)
+ Ck Uy Uy L‘Sk) - 2B(ﬁ’l)(x1i,xzj,tk) }VO

where  v() is the volume of on elementary call. The indices 67 and 69 (in the sequal - 63 )
indicate the cut 8i , along which the directions (/1, {5, ¢3, {4 ) are considered. In their turn &i
represent the cuts parallel to the coordinate planes xj0T , x9 0 T, X7 0 Xp passing through the centroid
( X1j X2j» t) of an elementary cell . Now we choose directions emanating from knot (xpj, X2j » ti) on
each cutas follows :

(L1, L2, L3, L4) iy~ (@, m-ap, ©+ay,2m-0p)

For simplicity, we use the same notations for angles on each cut &; Moreover the values
of a trigonometric function, say for argument o, are different e.g.
h, h, h,
2

(COSOL])I =—, (COSOL]) ) T T— (COSOL]) ) S T—
" hisd ) Jnd 1< ® JnE +h
(when hy # h,)

According to the Hamilton principle, the difference functionals (2.4) — (2.6) define respectively the
following three-layer finite difference schemes:

uo +0t’RiUg =Uyx, + U, +, =1L N, (forafixedj)  (2.7)

uo +0T°RoUg = Uxx, +Uox, +F 5 j= LN, (forafixedj)  (2.8)

222



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(6), 2009

uo +0t?(R1 +R2)Ug = Uy, +Ugoxs +T i,j=1,N (2.9)

where f = fijy =f (X1, X2j, ti) , N7 is the number of direction points along the ~ 0Xy axis, hile
N2 _along the 0x2 axis, N=(N1’N2)
Ri = _Aii , Aiiu = Ux; Ux; , i: 1,2 .

c e . ., Ou &Lo’u
3. Finite difference schemes for the equation — = z

+f.
= oxi

For the given equation consider the following identical representations

8u o*u (0%u
= +B —+ f
ENET (8‘[2 8x2](8) BZ br

i= 2
ou 0%u 0*u 0*u L 82u
—+ = + + +Bf,
ot ot [8‘[2 B@x;](éz B;‘@X? b
1#2
ou 0%u o0*u 0*u
—+ = + +
ot ot (8‘[2 B@Xﬁ](ak) Blz'
i#
ou 0%u o0*u 0*u —
=4 = + k=1p) and
8t 8t2 (&2 B@){Z](ap ( p)
ou P (5% 0*u
—+p + Bf.
penft3 2 ale& ;

where §; this time represent the hyperlanes.

If we repeat word for word the method of receiving the finite difference schemes, we obtain the
following schemes

p
o +ot’Ryug :Zuxigi +f, k=Lp (3.1)

i=1

p p
u(t) +GT2(ZRi]utt :zuxiii +f. (32)

i=1 i=1
Note that (3.1) represents p independent schemes. The fixed k determines the variable x| with

respect to which the “sweep” method is being used for finding solution U. As to the solution of problem
by mean of finite difference scheme (3.2), we can apply the method of matrix factorization or some

P
economical scheme, of the operator R = ZRi is factorized on the upper layer (see [5, §2, p6]) or if we
i=1
consider the analogy of the Baker-Oliphant scheme (see [6]).
4. Weight schemes and an algorithm for the computation
of difference problem

Let us cousider the case with p=2 and for schemes (2.7), (2.8) write down the following o weight
schemes

un+1 _ un—l

2 —GT2A11ut{ = A11(Oﬂanrl +(l—(x)u“)+ Azzun_l +f", 4.1)
T
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un+2 _un
> —GTzAzzut{ =A» (Oﬂln+2 +(l—(x)un+1)+ A]]Un +fn+1 . (4.2)
T

1
First we write down the scheme (4.1) on the (n - 5 ) layer or for step% .

1

n n-1 2 n—
¥—G(%) Allu& :A11(0Lun +(l—0c)u“‘1)+ Azzun_l +f 2
T

and find the solution on the n-th layer. The scheme is three-layer, but now and in the sequel if the
. .. I-a
parametrers o, o and the weight are chosen from the condition & = > ,we come to the two-layer

1
scheme, where only the right-hand side f depends on the halfstep f 2 =f (i h,,1,h, ,%) )

Then, alternating the schemes (4.1) and (4.2) we obtain the solutions on the n+1, . . . ,n+p layers
and so on.
When p=3, we consider for the scheme (3.1) the following schemes

un+1 _un—l 1— a
— A11(lanrl + u“‘l): (xAnu“” + Azzun_l + A33un_1 +f" . (4.3)
27 2
un+2 _un 1— a
— A (u“+2 +un): (XAzzun+2 + A]]Un + A33u“ + fn+1 . (4.4)
27 2
n+3 n+l
u - -u l1-a
2 2 ALK (un+3 +un+l): aA3u" "+ Au™ + Apu™ £ (4.5)
T

1
Analogously write down the scheme (4.3) for the (n - 5 )-th layer :

n n-1 1
u _u 1_ n— n n— n— =
— 2OL An(u“ +u 1)=OLA1111 +Ax»u ! +A33u ! +f 2 (4.6)

T
After finding solutions by scheme (4.6) on n-th layer, we alternate the schemes (4.3), (4.4) and (4.5)
to find solutions on the layer n+1, ..., ntp, etc.
Having the rule described, we can write down the a-weight schemes by means of scheme (3.1) for
a general p.
n+k n+k-2 p o
u u _ 1 a Akk (un+k +un+k—2): OLAkkun+k + zAiiun+k_2 + fn+k—1 , k — Lp (47)
27 2 i=1
ik

No -1

The solution is u™™' where K;=12...., . (Np—1is a number divisible by p).

Every k=1,p two-layer scheme completely approximates the given difference equation . Hence by

the p-time successive application of them we can define the solution to the difference problem on the
(n+pk)-th layer. The latter means the use of “sweep” method along the axes OXy . . ., OXp. So we

obtain almost absolutely stable, having complete approximation schemes for the case p = 3 and with the
exactness O( 1:2+|h|2) by alternating the independently constructed schemes.

5. Study of the difference schemes

So far we consider mostly the methods of construction of schemes .Now we show the stability of
the constructed schemes by use of methods of harmounic analysis.

224



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(6), 2009

Let us prove the unconditional stability of the scheme (4.7), when p=1. Suppose

ut = pnei(k1x1+k2x2+w+kpxp) , pn — eonT , (1 _ /_1) (5.1)
Assuming that f = 0 and substituting (5.1) into equation (4.7), we obtain the following dispersion

equation
(1+1+aa1]p2 +(1_0Lal —1]:0
2 2

For the coefficient of error increase we obtain

. > kih;j 2t .
where, in general a; = 4r; sin? —) T :h—z ,J=Lp.
j
For the stability it is necessary that |p| < 1, i.e.

I-a

‘1 2 a“

— <1 5.2
I+a (52)

l1+—a,

2

The ineguality (5.2) is valid for any 1, h, when o > 0.
Let us consider the case with p=2 . The dispersion equations have the folloving forms.

(1+1+—aal]p2 +(1_0Lal +a, —1]:0 ,

2 2

(1+1+aaz)p2 +(1_0LaZ +a, —1]:0
2 2

For the stability the following condition is required

pl=lp,p.|<1 (5.3)
where
1- _
I—Taa,—az 1—17(1"12 a,
Py = I+ © P E I+a
1+ ——a, 1+ a,
2
or equivalently
— 1—
‘l—laa, -a, ‘1— Ocaz—a,
2 <1, 2 <1
1+ a I1+a
I+——a, 1+

a,

Let us simplify the first inequality, then the second inequality could be simplified analogously
I-a
l1-——a, —a,

2

<1,
1+ o
1+ ——a,

1—1_7(13, —a,
2

1+1+7aa|
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Let us add l—a >0 (0 £a £ 1)toboth sides of the inequality. Then we obtain that:
+a

L_a
l+a < 2

1+1+aa1 l1+a
2

4 _ 2
" l+o o 20
1+1+aa1 I+o
2

Here the first iniquality is true, becauce ai >0 . According the second inequality for the
condition (5.3) it is necessary that

‘a 2 ‘a 2

2 T 1 2

1 l+al 1 l+a S( 20() (5.4)
1+—iga1 L+¥%ga2 I+a

Let us transpose the denominators (this means the alternating use of schemes). For the validity of
(5.4) we require that the following system holds true

g %
" l+a < 20
1+lzaa2 I+a (I-a)a; <2
3 p—
2 (+a)a;>207% i-12,
a, ——— 1+a
l+al 20
1+1+a ] I+a
2
Or which is the same
p 17% <2 if ac<l (5.5)
(1+a)’ -
We require also
2 59 l1-a

Hencea=0or, forp=2, 0L a L 1.

. T . . . . .
Remark:. For sufficiently large — i=1,2,...,ie.a;, =a,, we obtain the following expansion for p

Let us consider the case with p=3.
According to (4.7), when k=1,2,3, the dispersion equations have the following forms

I+a l-a
(1+ 5 a1)p2+( 5 a1+a2+a3—1):0,

I+a I-a
(1+ 5 a2)p2+( 5 a2+a1+a3—1):0,
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I+a I-a
(1+ 5 a3)p2 +(T+a1 +a, —1):0 ,

Analogously to (5.2), (5.3) we require that
‘I—Ha]—a2—a3 ‘1—1_2(132—31—33 ‘1—1_(133—32—&]
= = . < 5.6
Il =[p.p.ps] 1+ a 1+ a 1+a =1 -0
1+Ta] 1+ a, 1+ a;

In order to satisfy the inequality (5.6), we require that in the expression under the root the first

multiplier is less than 1 and analogously for other multipliers :
‘ ! l-a

2

al —212 _a3
<1

1+

l 731

I-a . . .
Let us simpify the inequality, remove the moduls and add 1 to both sides of the inequality.
+a

We get that in order to satisfy the last inequality the follwing is sufficient
a,+a;, ———

l+a 20
< 5.7
1+ l+a 67

I+——a,

We do the same for p the remaining multipliers :

a, +a, ———
l+al . 20 (5.8)

l+a 1+

I+——a,

a,+a, ————
T < 20 (5.9

1+a 1+

I+ —a,

Let us multiply the inequalities (5.7) - (5.9), transpose the denominators and require that

a,+a, ————
o 1+oc<20t

l+a 1+

I+——a,

Remove moduli and add to the resulting inequality We obtain (— Tra ), where 1< a,
+

4
a _——
Yt <2(Ot—1)
I+ = 1+«
l+——a,
Analogously we get that
4 4
1+al _2(a-1) 1+al _2(a-1)
l+a 7 140 l+a = 1+a
1+732

I+ —a,
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Multiply again the last three inequalition, transpose the denominaters and require that

4
1_:+oc SZ(a—l)’ (i=1,_3)
l+7aa, l+a
2 i
Then we obtain that
370 <2 ficac2

————<a, <
a(l+a) 2-a

. . T
Asymptotically , if — Do, we have for p

i

Haa)-

‘I_S_Gai
2 _
1+a l+a 2

1+ a, I+ —
2 2-a

3 ‘ 5-a 2

I
(S}
(S}
[
R
I
—_

For comparison, see [5], §2, the scheme (12).
Note that the transposition of the denominators required for (5.6) is equivalent to the following
compotational algorithm in equation (4.7) for k = 1, the “sweeep” method is being used along the OX;

axis, i] = 1, N for fixed ip and i3 When k=2, then 1, =1,N> for fixed i{ and i3. While when k=3, the

“sweep” method is used along the axis 0X3, i, = 1, N1 , for fixed i] and iy.

It have been considered also the cases with p = 4,5,6..... With thear help has been established the
general rule for estimation of aj

First, let us write down the dispersion equation for any p :

I+a | 1-a L . T
1+ a, + a,+»a, -1|=0, i=1,
( . jp . g; k p
k=i
We require that
l-a -«
1- a —a_—..—a 1- a —a —a_—..—a
_ _ 2 1 2 V4 2 V4 1 2 p-1 < 1
pl=lp, 0, p,|= — — <1.
1+ a 1+ a
1 2 V4
By means of this expression we obtain the following inequalities for the quanitities a;.
2p—(o+ 2
0<p 2p—(@+3) . 2 (5.10)
B+a-p)l+a) p-D-a

where p-2 < o< p-1 (p=23).

Asymptotically, i.e. when the value of iz is large enough, we get the following inequality for p(c)

i

oy — p p
‘1_213@13 ‘1_53
Ip(p-1) = - <1
1+1+aa 1+%a

L.e. in general, for estimation (5.10), when a=p-1, we get unconditional condition of stability
T
0<h—2<00 p=1,2,...,

In the sequal, we exploit the following representation of scheme (4.7) :
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un+k _ un+k—2 ~ p ~ ~
21 2 2 j:ﬁ
i#
k= rp, or well the fractional step notations
k k-1
- = k k-1 k-1 2k-1
u -y °? n+— n+— p n+— n+ 5

—=05pA,|\u " —u * +2Aﬁu N (5.12)
l’L’ i=1
p

k=Lp.

This permits us to make the following conclusion : the two-layer finite difference schemes (5.11),
or which is the same, the schemes (5.12), represent a generalization of existing economic schemes for
multidimensional parabolic equations with constant coefficients. Besides, the choice with weight
permited the schemes to be dependent only on the dimension p.

Let us schow that the scheme (5.12) approximates equation (1.1) and has exactness of second order
with respect to steps. Let us consider first the case p=3. Analogously to [7] we write down scheme (5.12)
in the following form :

1 1 1
+— n+= n+— n+— n+= n+=

n
Au 3=Au"+Bu", A,u 3=A,u 3+Bu 3, A,u"™=A,u 3+Bu 3

where Ai ZE—%AH N i=1,2,3. BZ%(A]] +Ax»n +A33).

1 2
n+—  n+o
Exceptinginturn u 3, u 3 , we obtain the following equivalent scheme

AALA U™ = A ALAU" +{B(AA, +A A, +ALA,)+B>(A, +A, +A,)+B Ju"
If we insert the values of operators A;, B and represent with respect to T in the expanded form,

obtain

2 n+l n
T u" —u
_[E) (AnAxn +AnAsz + AnAs )—2 +

un+l n n+l +un

-u u
——————=(An+An +Ap3)———
T 2

3 n+l n
- 1
+[%) A11A22A33u+12{E(A11 +Axn +A33)(A11A22 +AnAs; +A22A33)_
T

1 n
_Q(A“ + A +A33)3}u

This scheme is equivalent to the scheme
un+1 _un un+1 + un
—————=(An+An +Ayn)——
T 2
and approximates the heat conductivity equation with the exactness O(t 2+|h|2 ).
Analogouly we can consider the case of arbitrary p (p>3). Let us write down scheme (5.12) in the
following form

1
n+=

Ain P =(4 +Bu?
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whereAi:E—%Aii, i=Lp » B=

Exceptinginturnu ® ... u P? | we obtain
+1 —
Ap Ay Ap Ut = Ap Ay AU H{B(Ag Az Apt. AL Ag L Ap o Ap )+
+B2(Ag Ag o Apt AL Ay LAy 3 Ap )+ BT (A Ay + AL +BP L uD

If we tepresent in the expanded form with respect to T, obtain

r+l 1 n n+l 2

e U =(An+--+ ﬁw)%—[gj (Arnfias - Apoipa 4+ -+ AnAs - Apapoz A
T

n+l _ | n 2 n+l _ .n
T B T

From this follows that the last is equivalent to scheme (5.12) and approximates the heat conductivity
equation (1.1) with the same exactness as the following scheme

+1
un n

—u

un+1 + un

6. Some remarks on the step-like schemes
(5.11) and fractical step (see [3], [5]).

1. Write down the equivalent schemes (5.11) and (5.12) when p =1
n+l n—1
1

% = EAll(unH +un_1 )+ "

n+l n 1

u —-u n+l

= _All(un+1 +un)+ f 2
T 2
if £= 0, we get the Krank-Nicolson scheme (see [5], §2, p.8).

2. Analogously consider the case with p =2

+1 1 “% n 1 1
n n- — +— n+—
u' —u _ u u n a
—=A11un+1+A22un 1+fn — = Anu 2 +4+Apu"+f 4
27 0,57
; 6.1)
un+2 _un n+1
= Azzun+2 +Aju” + ot u—u 2 - ail s
21 =Axnu +Aru 24f 4
0,5t

If £f=0, (6.1) represents the schemes of Pismen, Rochford and Douglas, see [1-2]. Generally, if f
# 0, the difference between the schemes (5.11) and splitted or fractional-step schemes (the latter is
equivalent to factorized schemes concordant to the non-zero boundary conditions see [3], IX, §1 ) consists
just in calculation of f. This seems to be natural, since (5.11) schemes, unlike to other economical
schemes, completely approximate the given differential equation.

3. For the finite-difference scheme (5.12) non lomogenorsl boundary conditions u(x,t)= ¢@(x,?),

k
n+— k
(x,t)eI", can implemented as folloms: u 7 (x) = q{x,(n + —]T] , xel
p

"M (x)=ox,(n+1)) , xel
Notice that in this scheme maintains second order accuruey , mhile to achieve the same effect with

k

n+—
factored numerical schemes special boundary formulees must be lerived for u P see e.g [3,
appendix,632].
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4. The continuity of solution of difference problem with respect to the initial conditions and to the
right hand side of equation, follows form stability of scheme (5.11).

Constructed by the suggested method three-layer schemes for the second order parabolic and
hyperbolic equations with variable coefficients, see [8,9] whose investigetion are based on the general
principle of regularization were tested repeatedly by a lot of tests. The case of three layer parabolic
equations we apply our method for one practical specific boundary problem of hydrodynamic and its
numerical solutions are represented in a tabular form (see [10]).

Reference

1. Peaceman D.W., Rachford H.H. The numerical solution of parabolic and elliptic differential

equations . “Journ. Soc.Industr. Appl. Math.”, vol, 3 (1955), #1. pp 28-42.
2 2
2. Douglas J., On the numerical integration of Q + 8_u = @ by  inplicat methods.
ox* oyt ot

“Journ.Soc.Industr. Appl. Math.”, vol 3 (1955) #1, pp. 42-65.

3. Samarsky A.A. The theory of difference schemes. Nauka, Moscow, 1977.

4. Marchuk G.J. Methods of calculation in Mathematical physics., Nauka, Moscow, 1988.

5. Yanenko N.N. The method of factorial steps for solvation multidimensional problems in
mathematical physics. Nauka, Novosibirsk, 1967.

6. Baker G.A., Olipant An implicit numerical method for solving the two dimensional heat equation
“ Quart, of Appl. Math.”, vol XVIII (1960), #4, pp.361-375.

7. Douglas J., Rochford H.H. On the numerical solution of heat conduction problems in two and
three space variables. “Transactions of the Amer. Math. Soc.”, 1956, vol-82, #2, pp. 421-439.

8. Komurjishvili O. Three-layer difference schemes for multidimentional hiperbolic equation.
Seminar of I. Vekua Institute of Applied Mathemathics. Reports, vol. 18, # 1, 2003.

9. Komurjishvili O. Three-layer difference schemes for multidimentional parabolic equation of
the second order Seminar of I. Vekua Institute of Applied Mathemathics. Reports, vol.19, #1, 2004.

10. Davitashvili T., Gunava G., Dichaminjia N., Komurjishvili O. Pollutans transfer in environment
with one new three-dimensional numerical scheme. Seminar of I[.Vekua Institute of Applied
Mathemathics Reports, vol. 28, 2002

Lb3S5M3NS60 1LIIFIBN IHS3SRLB3S6HB(MINRI>NS6(), IIRIN33MIBNGNIESIB>NS60
336530MIH0 &030L 3S6SMRIdNL 06&I3AHIBNLSA30L

@356 Jmdmx0d30mo!, Bewst bmdgho go?
1-o. 333301} Lob. 3.)80')3363250000 aomaaoéodoh 06]5(50(5‘3(3)0
2 - hodoﬁ)m&]gmmh (53{]503314)0 ‘3603314)130(3)3@0
ébondy

60501’)0;:)3250 35)030;:)605%0')80;:)360060 30(4)025(');:)'3(4)0 (8)030]5 6&5(50');:)3250]5 05(5_3)365)3601)om301)
3014)(5030, hoaaéﬁ)o‘ag:m, obhmm‘a@)ﬂﬁmg 30\)614)00\)0 %‘omogg—boxoo&) hj{]aa&oh 06325013 omamﬁmmao.
smlbsbodbsgos, Gmd  moomggmo  Lbgsmdosbo  gebdmemads  bergmee  8830mJbodocrgdls  dmzgdye
053969630800 3sbBmmgdsl.  dqgdgdol  dmadsemdals  asdmggmgzobsmgol  asdmoggbgds  Isdmboryemo
sbsgobols dgmmeo.

PA3HOCTHBIE CXEMBI JIJI1 UHTETPUPOBAHMA MHOT'OMEPHEIX YPABHEHUH
ITAPABOJIMYECKOTI'O THUITIA C IIOCTOAHHBIMU KOSPOUITUEHTAMU
Komypmxumsuim 0., XoMepuKku H.?

1 - Uncr. [puxnaanoit matemaTtuku uMm. 1. Bekya,

2 - I'py3unckuii TexHndeckuil Y HUBEpCUTET

Pesome
PaccMoTrpuBaercs anropuTM MOCTPOCHUS MPOCTHIX CHMMETPH30BAaHBIX a0COMOTHOIO YCTOWYMBBIX

JPOOHO-IIIATOBBIX CXEM, JJIi MHOTOMEPHOIO YpaBHEHHUs Iapaboimdyeckoro Ttumna. s ucciemoBaHus
YCTOWYMBOCTH PAa3HOCTHBIX CXEM HCIOIB3YETCS METO]] TApMOHUYECKOT'0 aHaN3a.
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