საქართველოს ტექნიკური უნივერსიტეტი

ხელნაწერის უფლებით

გიორგი ბიბილეიშვილი

მოლეკულურ-იონური სისტემების დებარირების და დეფთორირების ნანოქიმია, მემბრანული ნანოტექნოლოგიებისა და ნანოსისტემების დამუშავება-შექმნითა და საწარმოო დანერგვით

სადოქტორო პროგრამა-ქიმიური და ბიოლოგიური ინჟინერია შიფრი - 0410

დოქტორის აკადემიური ხარისხის მოსაპოვებლად წარდგენილი დისერტაცია

ავტორეფერატი

თბილისი 2017 წელი სამუშაო შესრულებულია საქართველოს ტექნიკური უნივერსიტეტის ქიმიური ტექნოლოგიისა და მეტალურგიის ფაკულტეტის ქიმიური და ბიოლოგიური ტექნოლოგიების დეპარტამენტში; სტუ-ს მემბრანული ტექნოლოგიების საინჟინრო ინსტიტუტში.

სამეცნიერო ხელმძღვანელები: მეცნიერებათა ეროვნული

აკადემიის წევრ-

კორესპონდენტი

პროფესორი

დ. თავხელიძე

ნ. მუმლაძე

რეცენზენტები: -----

დაცვა შედგება ------ წლის "-----" თებერვალს, ------ საათზე საქართველოს ტექნიკური უნივერსიტეტის ქიმიური ტექნოლოგიისა და მეტალურგიის ფაკულტეტის სადისერტაციო საბჭოს სხდომაზე, კორპუსი -----, აუდიტორია ------

მისამართი: 0175, თბილისი, კოსტავას 77.

დისერტაციის გაცნობა შეიძლება სტუ-ს

ბიბლიოთეკაში, ხოლო ავტორეფერატის - ფაკულტეტის ვებ-გვერდზე

სადისერტაციო საბჭოს მდივანი პროფესორი **ზ.გელიაშვილი**

სადისერტაციო თემის აქტუალობა

სადისერტაციო სამუშაოს აქტუალობას განსაზღვრავს ევროკავშირის 2003 წლის 16 თანახმად მაისის (2003/40/ეკ) დირექტივა, რომლის მინერალურ წყლებში შედგენილობის კომპონენტების ბუნებრივად წარმოდგენილი ქიმიური შემთხვევაში მაქსიმალური ზღვარის გადაჭარბების საფრთხე ექმნება საზოგადოებრივ ჯანმრთელობას.

ბუნებრივი, მათ შორის მინერალური წყლების გაწმენდა, სტერილიზაცია, ქიმიური კომპონენტების ზღვრულ დასაშვებ კონცენტრაციებამდე დაყვანა განსაკუთრებით მნიშვნელოვანია ადამიანის ჯამრთელობისათვის უსაფრთხო კვების პროდუქტების მომზადების თვალსაზრისით.

ქიმიური შედგენილობის მიხედვით განასხვავებენ სუფრისა და სამკურნალო ბუნებრივ მინერალურ წყლებს. მინერალური წყლების ის სახეები, რომლებშიც მინერალური მარილების შემცველობა აღემატება 500 მგ/ლ, რეკომენდირებულია სასმელად სამკურნალო მიზნებისთვის მხოლოდ განსაზღვრული დროის განმავლობაში. ასეთ მინერალურ წყლებს მიეკუთვნებიან: "ბორჯომი,, , "ნარზანი,, , "ესენტუკი-4 და 17,, და სხვა.

ბუნებრივი წყაროების სუფრის წყლები კი შეიცავენ მარილების შედარებით მცირე რაოდენობას და მათი მიღება შეიძლება განუსაზღვრელი რაოდენობით.

მიწისქვეშა წყლები და მათ შორის მინერალური წყლები, იფილტრება მიწის სხვადასხვა სახეობის ფენებში გავლის დროს, მაგრამ იწმინდება რა ამ დროს შეწონილი ნაწილაკებისგან, ისინი შეიძლება დაჭუჭყიანდეს მცენარეული და ცხოველური ორგანიზმების ხრწნის პროდუქტებით, აზოტოვანი შენაერთებით, სხვადასხვა ნივთიერებებით ქანების ფენების შემადგენლობის მიხედვით.

ამ მხრივ არც ბორჯომის მინერალური წყალია გამონაკლისი. წარმოადგენს რა ძვირფას სასმელი დანიშნულების მინერალურ წყალს, რომელიც შეიძლება ფართოდ იქნეს გამოყენებული სამკურნალო-გამაჯანსაღებელი მიზნებისთვის, იგი შეიცავს ჭარბი რაოდენობით როგორც მაკრო-, ასევე ქიმიურ კომპონენტებს. ასე მაგალითად, ფთორის რაოდენობა სხვადასხვა ჭაბურღილების მიხედვით მერყეობს 4-10 მგ/ლმდე, ზოგიერთ შემთხვევაში კი მისი რაოდენობა 10 მგ/ლ-ზე მეტია. ფთორის ზღვრული დასაშვები კონცენტრაცია კი არ უნდა აღემატებოდეს 5,0 მგ/ლ-ს.

წარმოდგენილი მაჩვენებლების მიხედვით ფთორის რეალური კონცენტრაცია 2-ჯერ აღემატება დასაშვებს.

ასეთივე მდგომარეობა არის ბარიუმის შემთხვევაშიც. ბარიუმის რაოდენობა სხვადასხვა ჭაბურღილების მიხედვით მერყეობს 1.7-3.8 მგ/ლ-მდე, ხოლო ზოგიერთ შემთხვევაში 8,14 მგ/ლ-მდე (37 ბურღილი) აღწევს.

ასევე განსაკუთრებით ხაზი უნდა გაესვას იმას, რომ სიმღვრივის მაჩვენებელი სხვადასხვა ბურღილებში ფორმაზინის ერთეულის მიხედვით მერყეობს 1.37-დან 9.72-მდე. ულტრაფილტრაციული მეთოდით დამუშავების შედეგად სიმღვრივის მაჩვენებელი ფორმაზინის ერთეულით შეადგენს 0.09, ხოლო ნანოფილტრაციით -0.06, რაც მეტყველებს ბორჯომის მინერალურ წყალში სხვადასხვა გრანულომეტრული ზომების შეწონილი ნაწილაკების დიდ რაოდენობაზე.

აქედან გამომდინარე, აუცილებელი ხდება ბორჯომის მინერალური წყლის შეწონილი ნაწილაკებისა და მიკროორგანიზმებისაგან გაწმენდა, ხოლო ამის შემდგომ ნაწილობრივი დეფთორირება-დებარირების განხორციელება, რათა მასში ფთორის და ბარიუმის შემცველობა მოექცეს ევროკავშირის მიერ დადგენილ დასაშვები ნორმის ფარგლებში.

სამუშაოს მიზანი

აქედან გამომდინარე, სადისერტაციო სამუშაოს მიზანს წარმოადგენს ბორჯომის მინერალური წყლის ნაწილობრივი დეფთორირება-დებარირების მემბრანული ნანოტექნოლოგიისა და აპარატურის დამუშავება. ამისთვის უნდა დადგინდეს ნაწილობრივი დეფთორირებისა და დებარირებისთვის საჭირო ბარომემბრანული პროცესები - ულტრაფილტრაცია, ნანოფილტრაცია, უკუოსმოსი. შეირჩეს დადგენილი მემბრანული პროცესების განხორციელებისთვის საჭირო პირობები, განისაზღვროს ამ მემბრანული პროცესების ოპტიმალური რეჟიმული პარამეტრები და შეიქმნას სათანადო მემბრანული მოდული, რომელიც უზრუნველყოფს აღნიშნული ტექნოლოგიური პროცესის მაღალ დონეზე განხორციელებას.

აღნიშნულიდან გამომდინარე, ჩასატარებელ სამუშაოს მიზანს წარმოადგენს: 1.მემბრანული სისტემებისთვის ადეკვატური მათემატიკური მოდელების შემუშავება მათში მიმდინარე პროცესების კანონზომიერების კვლევისთვის;

2.სხვადასხვა ქიმიური შედგენილობის ხსნარებიისთვის იონური სელექციის პროცესის თეორიული და ექსპერიმენტალური კვლევა;

3.ბორჯომის მინერალური წყლის სხვადასხვა ბურღილებისთვის ნაწილობრივი (სათანადო დონეზე) დებარირება-დეფთორირების იონური სელექციის მეთოდებისა და მემბრანული ტექნოლოგიების დამუშავება;

4.მემბრანულ სისტემებში ჰიდროდინამიკური პროცესების კვლევა;

5.მემბრანულ სისტემებში პროცესის განხორციელების ოპტიმალური პირობების განსაზღვრა;

6.შემუშავებული მემბრანული პროცესისთვის ჰიდროდინამიური სრულყოფილობის შეფასება და შემდგომი დახვეწის შესამლებლობის ანალიზი;

სადისერტაციო ნაშრომში წყდება შემდეგი ამოცანები:

1.სხვადასხვა ხსნარების ქიმიური შედგენილობის იონური სელექციის მეთოდების შემუშავება;

2.ბორჯომის ბუნებრივი მინერალური წყლების სხვადასხვა ბურღილებისთვის ქიმიური შედგენილობის განსაზღვრა, ბარიუმისა და ფთორის ზღვრულ დასაშვებ კონცენტრაციებთან მისადაგება სხვა ქიმიური კომპონენტების სათანადო რაოდენობების შენარჩუნებით.

3.ბორჯომის მინერალური წყლის დებარირება-დეფთორირების მემბრანულ აპარატში ნაკადის ჰიდროდინამიკის შესწავლა და მისი გავლენის დადგენა კონცენტრაციული პოლარიზაციის ხარისხზე;

4.აპარატის ერთეულ მოცულობაში მემბრანების ჩაწყობის სიმკვრივის (მ²/მ³) ზრდის შესაძლებლობების დადგენა;

5.ბუნებრივი მინერალური წყლებიდან ეკოლოგიურად სუფთა, მაღალხარიხოვანი მინერალური წყლის მიღებისთვის გაყოფის პროცესის ოპტიმალური მუშა-წნევის, ნაკადის ტემპერატურისა და სიჩქარის დადგენა;

მეცნიერული სიახლე

1.სხვადასხვა ქიმიური შედგენილობის ხსნარებისთვის იონური სელექციის მეთოდების დამუშავება ბარომემბრანული პროცესების საფუძველზე;

2.ბორჯომის ბუნებრივი მინერალური წყლის სხვადასხვა ბურღილისთვის ერთდროული სტერილიზაციის, დებარირება-დეფთორირების ბარომემბრანული პროცესების თეორიული და ექსპერიმენტული კვლევა;

3.ბორჯომის მინერალური წყლის ერთდროული სტერილიზაციისა და დებარირებადეფთორირებისათვის კონსტრუქციულად ახალი მემბრანული ბრტყლადპარალელური ტიპის აპარატის შექმნა;

4.ახალი აპარატის ბაზაზე მემბრანული ნანოტექნოლოგიისა და ნანოსისტემის დამუშავება და შექმნა.

5.აპარატის ძირითადი მუშა კვანძისთვის თეორიული და ექსპერიმენტული კვლევების საფუძველზე ოპტიმალური ტექნოლოგიური პროცესის უზრუნველყოფის მიზნით, რეჟიმული პარამეტრების გამოთვლისთვის შესაბამისი საანგარიშო ალგორითმების შექმნა და დამუშავება.

6.ჰიდროდინამიკური პარამეტრების გავლენის დადგენა მუშა კვანძში კონცენტრაციული პოლარიზაციის მაჩვენებელზე და ამ დამოკიდებულების განმსაზღვრელი საანგარიშო ალგორითმის შექმნა და დამუშავება.

7.მოცემული მემბრანული დანადგარისთვის გეომეტრიული და რეჟიმული პარამეტრების ოპტიმიზაციის თეორიული გათვლა;

ნაშრომის აპრობაცია

ნაშრომის წარდგენა და მოსმენა სამი თემატური სემინარის სახით განხორციელდა საქართველოს ტექნიკური უნივერსიტეტის ქიმიური ტექნოლოგიისა და მეტალურგიის ფაკულტეტის ქიმიური და ბიოლოგიური ტექნოლოგიების დეპარტამენტში.

ნაშრომის არსი განხილული და გამოქვეყნებულია პოლიმერული მასალების ბათუმის 2015 წლის მე-4 საერთაშორისო კონფერენციაზე.

1. G.Bibileishvili, G.Gogesashvili, "PREPARATION OF POLYMER MEMBRANES BY USING OF SOME AROMATIC POLYAMIDES, "4th International Caucasian Symposium on Polymers and Advanced Materials". Batumi, Georgia 1-4 July, 2015.

2. M.Kezherashvili, G.Bibileishvili," HIGH PERFORMANCE MATERIALS FOR MEMBRANE", "4th International Caucasian Symposium on Polymers and Advanced Materials". Batumi, Georgia 1-4 July, 2015.

ნაშრომის სტრუქტურა და მოცულობა - სადისერტაციო ნაშრომი გაფორმების ინსტრუქციის მიხედვით მოიცავს 173 გვერდს, მათ შორის სატიტულო, ხელმოწერის, რეზიუმეს ორ ენაზე (ქართული და ინგლისური), შინაარს, ცხრილების ნუსხას -19, სურათების ნუსხას - 79, ნახაზების ნუსხა -18, გამოყენებული ლიტერატურის ნუსხას - 123 ერთეული.

სამუშაოს ძირითადი შინაარსი 1. ლიტერატურის მიმოხილვა

წარმოდგენილ ნაშრომში სხვადასხვა წყაროზე დაყრდნობით განხილულია შემდეგი საკითხები:

1.1"ნანოქიმია", "ნანოტექნოლოგიები" და ნანოობიექტების

კლასიფიკაცია;

1.2 მემბრანული გაყოფის პროცესები;

 1.3 მინერალური და სასმელი წყლების მემბრანული მეთოდებით დამუშავების თანამედროვე მდგომარეობა;

1.4 ინოვაცია და მემბრანული სფერო;

1.5 ბორჯომის მინერალური წყლის დახასაიათება და ქიმიური შედგენილობა;

1.6 მინერალური წყლების ნორმატიული საფუძვლები ევროკავშირის 2003 წლის

16 მაისის დირექტივის მიხედვით 2003/40/ეკ;

1.7 ფთორის დახასიათება და თვისებები;

1.8 წყლის დეფთორირების რეაგენტული მეთოდები;

1.9 ბარიუმის დახასიათება და თვისებები;

2.0 წყლის დებარირების რეაგენტული მეთოდები;

2.1 ჩასატარებელი კვლევების მიმართულებები.

2. შედეგები და მათი განსჯა

2.1 თეორიული კვლევა

2.1.1იონური და მოლეკულური სისტემების დამუშავების

მემბრანული მეთოდები

იონური და მოლეკულური სისტემები (ჭეშმარიტი ხსნარები) შედგებიან 1 ნმ. ანუ 0,001 მკმ.–ზე მცირე ზომის ნაწილაკებისგან. ჭეშმარიტ ხსნარებში გახსნილი სახით არიან ნივთიერების მოლეკულები და იონები. ისინი განიხილებიან როგორც ერთფაზიანი სისტემა.

იონური და მოლეკულური სისტემების წინასწარი (მოსამზადებელი) დამუშავება შესაძლებელია: მექანიკური ფილტრაციით, მიკროფილტრაციითა და ულტრაფილტრაციით, ხოლო ფილტრაცია, ფრაქციონირება და კონცენტრირება ნანოფილტრაციითა და უკუოსმოსით. ფინიშური-სტერილური ფილტრაციისათვის შესაძლებელია ჩიხური, ულტრა – და მიკროფილტრაციის გამოყენება.

2.1.2 ბარომემბრანულ პროცესებში კონცენტრაციული პოლარიზაციის გავლენის შემცირების თეორიული საფუძვლები (ლამინ., ტურბ.)

კონცენტრაციული პოლარიზაციის გავლენის შემცირების პრობლემების კვლევა მიმდინარეობს ოთხი მიმართულებით:

-გასაყოფი სისტემების ჰიდროდინამიკური, კონსტრუქციული და სქემატური თვალსაზრისით, მემბრანის ზედაპირზე ადსორბირებული ნაწილაკებით, დაჭუჭყიანების დაგროვების უნარის მიხედვით.

-მეთოდების მოძებნა, რომლებიც იძლევა მემბრანების შეღწევადობის ამაღლების საშუალებას გასაყოფი სისტემების წინასწარი ფილტრაციის კომბინაციის შერჩევის მეშვეობით.

-პროცესის ჩატარების ჰიდროდინამიური პირობების დადგენა (ნაკადის ლამინარული და განვითარებული ტურბულენტური მოძრაობის რეჟიმული პარამეტრების ოპტიმიზაცია), რომლებიც ხელს უწყობენ კონცენტრაციული პოლარიზაციის შემცირებას.

-მემბრანების რეცხვა-რეგენერაციის, სტერილიზაციისა და კონსერვაციის მეთოდების დამუშავება.

პოლიდისპერსულ სისტემებში, რომლებშიც დისპერსულ გარემოს წარმოადგენს წყალი, მემბრანის დაბინმურება იონური, მოლეკულური, შეწონილი და კოლოიდური ნაწილაკებით არის შემდეგი ფაქტორების გავლენის შედეგი:

-კომპონენტების კონცენტრირება, მათი იონური, მოლეკულური და გრანულომეტრიული შედგენილობა;

-ზედაპირული მუხტის არსებობა დისპერსული ფაზის ნაწილაკებში;

-დიფუზიის კოეფიციენტის სიდიდე სხვადასხვა სახისა და ზომის ნაწილაკებისა დისპერსულ გარემოში;

-გამყოფ სისტემაში მთავარი კომპონენტების თანაფარდობა;

-გასაყოფი ხსნარის PH სიდიდე;

-პროცესის ძირითადი ჰიდროდინამიური პარამეტრები–წნევა, ტემპერატურა, ნაკადის სიჩქარე;

-მემბრანის კუთრი შეღწევადობა.

კონცენტრაციული პოლარიზაციის მოვლენის შესწავლასთან დაკავშირებით შესაძლებელია განვიხილოთ მილში შემავალი სითხის ნაკადის მოძრაობის დინამიკა. მილის შესასვლელთან სითხის ნაკადის ჭავლები, მილის კედელთან უშუალო შეხებაში მყოფი თხელი აფსკის გარდა, მოძრაობენ ერთნაირი სიჩქარით. სითხის ნაკადის ჭავლების ნაწილაკები, რომლებიც უშუალო შეხებაშია მილის კედელთან აქვთ ნულთან მიახლოებული სიჩქარე, ამიტომ აფსკში წარმოიქმნება სიჩქარის დიდი გრადიენტი და მაშასადამე, ხახუნის ძალის მნიშვნელოვანი მაჩვენებელი.

აქედან გამომდინარე, მილის კედელთან სიახლოვეს მყოფი სითხის ნაკადის ფენები მუხრუჭდება, ხოლო ცენტრალურ ნაწილში იზრდება (სითხის საშუალო სიჩქარიდან გამომდინარე). ამასთან, დამუხრუჭებული სითხის ფენის სისქე იზრდება მანამ, სანამ მილის რადიუს არ გაუტოლდება, რის შემდეგაც ყალიბდება ლამინარული მოძრაობისთვის დამახასიათებელი მეორე რიგის პარაბოლის ტიპის სიჩქარის პროფილი.

სადაწნეო საკნის კედელთან სითხის დამუხრუჭების თავიდან აცილების მიზნით მიზანშეწონილია ნაკადის მაღალ- და დაბალსიჩქარიანი შრეების ერთმანეთთან შერევის უზრუნველყოფა, რითაც გავზრდით მემბრანის სასაზღვრო ზონაში სიჩქარის მაჩვენებელს. მიღებულ სიჩქარეთა გადანაწილებით ყალიბდება ტურბულენტური მოძრაობისთვის დამახასიათებელი მეოთხე რიგის პარაბოლის ტიპის პროფილი. ქვემოთ,ნახაზი 1-ზე და 2-ზე მოცემულია ლამინარული და

ტურბულენტური პროფილის მქონე მეორე და მეოთხე რიგის პარაბოლური ტიპის სიჩქარის პროფილები.

ნახაზი 1. ლამინარული რეჟიმი ნახაზი 2. ტურბულენტური რეჟიმი ნახაზი 1-ზე მოცემული ლამინარული რეჟიმის საშუალო სიჩქარე Vı საგრძნობლად მცირეა ნახაზი 2-ზე გამოსახული ტურბულენტური რეჟიმის საშუალო სიჩქარეზე.

პროცესის განსახორციელებლად გამყოფ სისტემაში ნაკადის პერიოდული მიწოდება აპარატის ხან ერთი, ხან მეორე მხრიდან, უზრუნველყოფს დასამუშავებელი სითხის ტურბულენტობას, ამის გარდა, ხელს უწყობს ხსნარში გახსნილ მაღალკონცენტრირებულ ნივთიერებებს მოდულის არხის სიგრძეზე გადაადგილებაში.

2.1.3 მემბრანული ნანოსისტემების დამუშავების

თეორიული საფუძვლები

ბორჯომის ბუნებრივი მინერალური წყლის დებარირებადეფთორირებისათვის მემბრანული ნანოსისტემის კონსტრუირებას, დამუშავებასა შექმნას საფუძვლად სამეცნიერო-კვლევითი, უდევს ექსპერიმენტული, და საცდელ-საკონსტრუქტორო სამუშაოთა ბარომემბრანული პროცესების და ეფექტური მოდელირება.

აღნიშნული მოდელების მეშვეობით შესაძლებელია პროცესების ზღვრული ეფექტურობის გამოვლენა, მუშაობის მინიმალური დანახარჯებითა და მაქსიმალურად მაღალი სიმძლავრის გამოვლინებით.

გასაანალიზებელია, ბარომემბრანული პროცესების ოპტიმიზაციის მეთოდები, მემბრანული და მოლეკულურ-იონური სისტემების დამუშავების,

შექმნისა და ოპტიმალური მართვის ამოცანები, რომელთა გადაწყვეტას ეძღვნება სადისერტაციო ნაშრომი.

მემბრანული ტექნოლოგიების საინჟინრო ინსტიტუტში ავტორის უშუალო მონაწილეობით პოლიმერული კომპოზიციების ბაზაზე დამუშავებულია სხვადასხვა სახის მემბრანები.

ქვემოთ სურათზე 1 ნაჩვენებია მიკროფილტრაციული მემბრანა 0.3-0.4 მკმ. ფორის ზომით, რომლის გამოყენება დაგეგმილია ბორჯომის მინერალური წყლის დამუშავების ფინიშურ, მე-4 ეტაპზე.

სურათი 1. აცეტატცელულოზას 8% მემბრანა

ავტორის მიერ დამუშავებულია ფაზური ინვერსიით მემბრანული აპკების მიღების ხელსაწყო. ფუძე შრეზე დასასხმელ ხსნარად გამოყენებულ იყო დიაცეტატცელულოზას სხვადასხვა კონცენტრაციის მაფორმირებელი ხსნარები.

შექმნილი ხელსაწყოს გამოყენება შესაძლებელია ფაზური ინვერსიის პროცესში ფუძე შრის აბაზანაში ჩაშვების კუთხისა და სიჩქარის პარამეტრების დასადგენად.

სურათი 2. საკოაგულაციო აბაზანა სურათი 3. მემბრ. მიღების პროცესი ავტორის მიერ საქართველოს ტექნიკური უნივერსიტეტის მემბრანული ტექნოლოგიების საინჟინრო ინსტიტუტში დამუშავებულია და შექმნილია მემბრანის ფორების ზომების განმსაზღვრელი ხელსაწყო, რომლის მუშაობის პრინციპი ემყარება ბუშტულაკის წერტილის წარმოქმნის განსაზღვრის მეთოდს. ხელსაწყო დამზადებულია 3დ პრინტერის მეშვეობით.

სურათი 4. მემბრანის ფორების მზომი ხელსაწყო

2.1.4 ბარომემბრანული პროცესების ოპტიმიზაციის

მათემატიკური აღწერა

პროცესის მიმდინარეობის რეჟიმის მიხედვით (სტაციონალური ან არასტაციონალური) მათემატიკური მოდელები იყოფა: სტაციონალურ ანუ სტატიკურად და არასტაციონალურ ანუ დინამიკურად.

ამიტომ მათემატიკური მოდელირეზა გულისხმობს შემდეგ ეტაპებს:

1.მათემატიკური მოდელის აგება;

2.ალგორითმის შექმნა, რომელიც ახდენს შესასწავლი პროცესის მოდელირებას;

3.მოდელის და შესასწავლი ობიექტის ადეკვატურობის დამყარება.

მათემატიკური მოდელი გულისხმობს იმ სახის თანაფარდობის სისტემის აგებას, რომელიც აღწერს პროცესის ელემენტერულ მოვლენებსა და მათ შორის ურთიერთობას, მირითადი ამღზნები ფაქტორების გათვალისწინებით.

2.1.4.1 ჰიდროდინამიკური პროცესის კვლევა სითხის

ნაკადის ლამინარული და

ტურბულენტური რეჟიმებისთვის

ნახაზი 3-ზე მოცემულია ნაკადის მომრაობის ლამინარული (ა) და ტურბულენტური (ბ) რეჟიმების პრინციპული სქემა. მუშა კვანმის (სადაწნეო საკანი *A,B,C,D,A*₁,*B*₁,*C*₁,*D*₁) კვეთი (*A,B,C,D*), სიბრტყეზე დეკარტის კოორდინატულ სისტემაში (*OY,OZ*).

2.1.4.2 ერთგანზომილებიან სისტემაში (Z) სითხის ნაკადის

სიჩქარე და წნევა ლამინარული და ტურბულენტური რეჟიმებისათვის

ნახაზი 3-(ა) და (ბ)-ზე მოცემულ (*A, B, C, D*) საკანში განიხილება სითხის მოძრაობის ჰიდროდინამიკური პროცესი გასაყოფი ხსნარის 20⁰C-მდე ტემპერატურისა და 0,1 × 10⁵ – 1,5 × 10⁵ პა.- მდე წნევის პირობებში.

საკანში სითხე იწყებს მოპრაობას საწყისი საშუალო სიჩქარით v_0 და ხარჯით Q_0 , ხოლო საკნიდან გამოედინება v_1 სიჩქარითა და Q_1 ხაჯით. საშუალო წნევის p და ფილტრატის წნევისდ p_F სხვაობით განპირობებულია სითხის ნაწილის გადინება ნახევრადგამტარ მემბრანაში, რის შედეგადაც მიიღება ფილტრატი Q_F . $v_z(Y,Z,)$ და $v_y(Y,Z)$ სიჩქარეები წარმოადგენენ სითხის მოძრაობის სიჩქარის პროექციას (*OZ*) და (*OY*) ღერძებზე. სადაწნეო საკნის გეომეტრიული ზომებია: სიმაღლე $h = 0.35 \times 10^{-3}$ - h_{e_1} , სიგრძე- $Z_L = 540 \times 10^{-3}$ h_{e_1} , სიგანე- $Y_L = 50 \times 10^{3}$ h_{e_1}

ბარომემბრანული პროცესის ოპტიმიზაციის მიზნით მიზანშეწონილია სადაწნეო საკანში ლამინარული პროცესის სანაცვლოდ დამყარებული ტურბულენტური რეჟიმის განხორციელება ერთიდაიმავე ენერგოდანახარჯების პირობებში.

ლამინარული და ტურბულენტური რეჟიმების პირობებში dz ფენისათვის მატერიალური ბალანსის განტოლებას აქვს სახე:

$$Q_0 = Q_1 + Q_F$$
 (1),

სადაც,

$$\begin{aligned} Q_0 &= Y_L \times h \times \langle v_Z \rangle \qquad (2), \\ Q_1 &= Y_L \times h \times \left(\langle v_z \rangle + \frac{\partial \langle v_z \rangle}{\partial z} dz \right) \qquad (3), \\ Q_F &= Y_L \times \frac{\kappa}{\mu} \times \left(\langle p \rangle - p_F \right) dz \qquad (4), \\ d &< v_Z \rangle = \frac{\partial \langle v_z \rangle}{\partial z} dz \qquad (5), \end{aligned}$$

(5),

$$\frac{\partial \langle v_z \rangle}{\partial z} = - \frac{\kappa}{\mu \cdot h} \cdot (\langle p \rangle - p_F), \qquad (6)$$

/ა არის მემბრანის ხვედრითი წარმადობა, რომელიც **დარსის** ფორმულის მიხედვით, განისაზღვრება შემდეგნაირად:

$$J_{\nu} = -\frac{\kappa}{\mu} \cdot (-p_F), \qquad (7)$$

იცვლება z ღერძის მიმართულებით ღერძის, ამიტომ კერძო **USOS**3, Vz. წარმოებული მიიღებს სახეს:

$$\frac{\partial \langle v_z \rangle}{\partial z} = \frac{d \langle v_z \rangle}{dz} , \qquad (8)$$

მისი გათვალისწინებით ფორმულა (8) ჩაიწერება შემდეგნაირად:

$$\frac{d \langle v_z \rangle}{dz} = -\frac{\kappa}{\mu \cdot h} \cdot (\langle p \rangle - p_F), \tag{9}$$

სიდიდეებში განტოლება (9)-ის გადასაყვანად განუზომელ შემოვიღოთ ტოლობები:

$$< V_Z > = \frac{< v_z >}{< v_0 >}$$
, (10)

$$< P > = \frac{-p_F}{p_F}$$
, (11)

$$dZ = \frac{dz}{h},\tag{12}$$

მე-(4) (9) განტოლებაში ჩავატაროთ გარდაქმნები, მაშინ მივიღებთ: $\frac{d \langle v_z \rangle \langle v_0 \rangle \div \langle v_0 \rangle}{dz \cdot h \div h} = -\frac{\kappa}{\mu \cdot h} \cdot (\langle p \rangle - p_F) \cdot p_F \div p_F, \quad (13)$

მე-(13) განტოლებაში შევიტანოთ

(10), (11) და (12) მაშინ განუზომელ სიდიდეებში მივიღებთ:

$$\frac{d \langle V_Z \rangle}{dZ} = - \frac{K \cdot p_F}{\mu \cdot \langle v_0 \rangle} \cdot \langle P \rangle, \tag{14}$$

მეორე მხრივ dz ფენისთვის პუაზეილის განტოლებას აქვს სახე:

$$\frac{d \langle p \rangle}{dz} = \frac{-12 \cdot \mu}{h^2} \langle v_z \rangle, \qquad (15)$$

ჩავწეროთ (15) განუზომელი სიდიდეებში,

$$\frac{d \langle P \rangle}{dZ} = \frac{-12 \cdot \mu \cdot \langle v_0 \rangle}{h \cdot p_F} \cdot \langle V_Z \rangle, \tag{16}$$

გავაწარმოოთ განტოლეზა (14) Z-ით და მივიღებთ:

$$\frac{d^2 \langle V_Z \rangle}{dZ^2} = \frac{-K \cdot p_F}{\mu \cdot v_0} \cdot \frac{d \langle P \rangle}{dZ},\tag{17}$$

ჩავსვათ $\frac{d < P >}{dZ}$ -ის გამოსახულება მე-(16) -დან მე-(17) -ში, მივიღებთ:

$$\frac{d^2 \langle V_Z \rangle}{dZ^2} = \frac{-12 \cdot K}{h} \cdot \langle V_Z \rangle , \qquad (18)$$

შემოვიღოთ აღნიშვნა,

$$\zeta = \sqrt{\frac{12K}{h}},\tag{19}$$

მე-(14) და მე-(16) განტოლებების შეჯერებითა და მე-(19) შემოტანით, ვიღებთ < V_Z >-თვის მეორე ხარისხის დიფერენციალურ განტოლებას:

$$\frac{d^2 < V_Z >}{dZ^2} - \zeta^2 < V_Z >= 0 \tag{20}$$

მე-(20) *V_z-ი*ს მიმართ არის მეორე რიგის დიფერენციალური განტოლება, ერთგვაროვანი და არ<mark>ასრუ</mark>ლი, <mark>მუდმივ</mark>ი კოეფიციენტით. მის ამოხსნას ვეძებთ შემდეგი სახით:

$$\langle V_Z \rangle = e^{sz}, \tag{21}$$

მაშინ (20) დიფერენციალური განტოლების მახასიათებელი განტოლება იქნება:

$$S^2 - \zeta^2 = 0, (22)$$

აქედან შეიძლება დაიწეროს

$$S_{1,2} = \mp \zeta, \tag{23}$$

ხოლო, მე-(23)განტოლების ზოგად ამოხსნას ექნება სახე:

$$\langle V_Z \rangle = a \cdot e^{s_1 z} + b \cdot e^{s_2 z}, \tag{24}$$

S-ის მწიშვნელობის შეტანით (24)-დან, მივიღებთ:

$$\langle V_Z \rangle = a \cdot e^{\zeta z} + b \cdot e^{-\zeta z}, \tag{25}$$

გარდავქმნათ გამოსახულება:

$$a \cdot e^{\zeta z} + b \cdot e^{-\zeta z} = ae^{\zeta z} + be^{-\zeta z} + \frac{b}{2}e^{\zeta z} - \frac{b}{2}e^{\zeta z} + \frac{a}{2}e^{-\zeta z} - \frac{a}{2}e^{-\zeta z} = = \frac{a+b}{2}e^{\zeta z} + \frac{a}{2}e^{\zeta z} + \frac{a+b}{2}e^{-\zeta z} + \frac{b}{2}e^{-\zeta z} - \frac{b}{2}e^{\zeta z} - \frac{a}{2}e^{-\zeta z} = = \frac{a+b}{2}(e^{\zeta z} + e^{-\zeta z}) + \frac{a}{2}(e^{\zeta z} - e^{-\zeta z}) - \frac{b}{2}(e^{\zeta z} - e^{-\zeta z}) = = \frac{a+b}{2}(e^{\zeta z} + e^{-\zeta z}) + \frac{a-b}{2}(e^{\zeta z} - e^{-\zeta z}), \quad (26)$$

(26) განტოლების ამოხსნის შედეგად შესამლებელია კოსინუსჰიპერბოლური და სინუსჰიპერბოლურის ცნობილი ტოლობების შემოტანა:

$$\frac{e^{\zeta z} + e^{-\zeta z}}{2} = \cosh(\zeta z), \quad (27)$$
$$\frac{e^{\zeta z} - e^{-\zeta z}}{2} = \sinh(\zeta z), \quad (28)$$

შევიტანოთ (27) და (28) განტოლებები (26)-ში, მაშინ მივიღებთ:

$$ae^{\zeta z} + be^{-\zeta z} = (a+b)\cosh(\zeta z) + (a-b)\sinh(\zeta z), \quad (29)$$

შემოვიტანოთ აღნიშვნები:

$$a+b=c_1,\tag{30}$$

$$a - b = c_2, \tag{31}$$

$$\langle V_Z \rangle = C_1 \cosh(\zeta z) + C_2 \sinh(\zeta z),$$
 (32)

*C*₁ და *C*₂-ის საპოვნელად გამოვიყენოთ სასაზღვრო პირობები:

1)
$$Z = 0$$
, $\langle V_Z \rangle = 1$
2) $Z = 0.54$, $\langle V_Z \rangle = V_1$ (33)

ჩავსვათ (23)-ში პირველი სასაზღვრო პირობა (22) განტოლებაში, მივიღებთ:

$$C_1 = 1$$
 (34)

ჩავსვათ (23)-ში მეორე სასაზღვრო პირობა (22) განტოლებაში, მივიღებთ:

$$C_1 \cosh\left(\zeta \frac{0.54}{h}\right) + C_2 \sinh\left(\zeta \frac{0.54}{h}\right) = V_1, \tag{35}$$

(2.35)-ში შევიტანოთ C_1 -ის მნიშვნელობა (2.24)-დან, მაშინ მივიღებთ:

$$\cosh\left(\zeta \frac{0.54}{h}\right) + C_2 \sinh\left(\zeta \frac{0.54}{h}\right) = V_1 \quad , \tag{36}$$

აქედან ამოვხსნათ C2, მივიღებთ:

$$C_2 = \frac{V_1 - \cosh\left(\zeta \frac{0.54}{h}\right)}{\sinh\left(\zeta \frac{0.54}{h}\right)} , \qquad (37)$$

საბოლოოდ (32)-ში ჩავსვათ C₁-ისა და C₂-ის მნიშვნელობები, მივიღებთ საშუალო სიჩქარის ვერტიკალურ მდგენელის V_Z-სათვის შემდეგ გამოსახულებას:

$$\langle V_Z \rangle = \cosh(\zeta Z) + \frac{V_1 - \cosh(\zeta \frac{0.54}{h})}{\sinh(\zeta \frac{0.54}{h})} \cdot \sinh(\zeta Z), \tag{38}$$

(14) განტოლებიდან განვსაზღვროთ:

$$\langle P \rangle = \frac{-\mu \cdot v_0}{K \cdot p_F} \cdot \frac{dV_Z}{dZ},$$
(39)

შევიტანოთ (39)-ში *V_Z-ი*ს მნიშვნელობა (38)-დან და გავაწარმოოთ *Z-*ით, მივიღებთ:

$$\langle P \rangle = \frac{-\mu \cdot \langle v_0 \rangle}{K \cdot p_F} \cdot \zeta \left\{ \sinh(\zeta Z) + \frac{V_1 - \cosh(\zeta \frac{0.54}{h})}{\sinh(\zeta \frac{0.54}{h})} \cdot \cosh(\zeta Z) \right\}, \quad (40)$$

შემოვიღოთ აღნიშვნა:

$$\langle F \rangle = \frac{p_{F \cdot h}}{12\mu \langle v_0 \rangle} \langle P \rangle, \tag{41}$$

მაშინ მივიღებთ:

$$\langle F \rangle = \frac{1}{\zeta} \cdot \left(\frac{\cosh\left(\zeta\frac{0.54}{h}\right) - V_1}{\sinh\left(\zeta\frac{0.54}{h}\right)} \cdot \cosh(\zeta Z) - \sinh(\zeta Z)\right), \tag{42}$$

მემბრანული მოდულის სადაწნეო საკანში გრძივი სიჩქარისა და წნევის გამოსაანგარიშებლად (38) და (40) ტოლობების საბოლოო სახე უგანზომილებო სიდიდეებში, არის შემდეგი:

$$\langle V_Z \rangle = \cosh(\zeta Z) + \frac{\frac{\langle v_1 \rangle}{\langle v_0 \rangle} - \cosh\left(\frac{\zeta 0.54}{h}\right)}{\sinh\left(\frac{\zeta 0.54}{h}\right)} \cdot \sinh\left(\zeta Z\right), \tag{43}$$

$$< P_Z >= \frac{-\mu \cdot < v_0 >}{K \cdot p_F} \cdot \zeta \left(\sinh(\zeta Z) + \frac{\frac{< v_1 >}{< v_0 >} -\cosh\left(\frac{\zeta 0, 54}{h}\right)}{\sinh\left(\frac{\zeta 0, 54}{h}\right)} \cosh\left(\zeta Z\right) \right), \quad (44)$$

ხოლო განზომილებიან სიდიდეებში v_z და p_z ექნება სახე:

$$v_z = \langle V_Z \rangle \cdot v_0, \tag{45}$$

$$p_z = \langle P_Z \rangle \cdot p_F, \tag{46}$$

2.1.4.3 ორგანზომილებიან სისტემაში (*Z*,*Y*) ფილტრაციის სიჩქარისა და წარმადობის განსაზღვრა ლამინარული და ტურბულენტური რეჟიმებისათვის

სადაწნეო საკანში ფილტრაციის სიჩქარისა და რაოდენობის განსაზღვრისათვის განვიხილოთ სითხის ნაკადის სიჩქარის განივი და გრძივი გეგმილები მოძრაობის ნავიე-სტოქსისა და მასის უწყვეტობის განტოლებების სახით.

ვაკუუმში სითხის **(ნიუტონის სითხე)** სტაციონალური მოძრაობის დროს ნავიე-სტოქსის განტოლებას აქვს სახე:

$$(\langle V \rangle \nabla) \langle V \rangle = \frac{-\nabla P}{\rho} + \nu \Delta \langle V \rangle, \tag{47}$$

ხოლო მასის უწყვეტობის განტოლებას აქვს სახე:

$$\nabla < V >= 0, \tag{48}$$

სიპრტყეში მოძრაობის შ_შმთხვევისთვის გვაქვს სიხქარის ორი გეგმილი $< V > \left(v_Z(y,z), v_y(y,z)\right)$ და განტოლება (2.47) ჩაიწერება შემდეგნაირად:

$$v_{z}\frac{\partial v_{z}}{\partial z} + v_{y}\frac{\partial v_{z}}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial z} + \nu\left(\frac{\partial^{2}v_{z}}{\partial z^{2}} + \frac{\partial^{2}v_{z}}{\partial y^{2}}\right), \quad (49)$$
$$v_{z}\frac{\partial v_{y}}{\partial z} + v_{y}\frac{\partial v_{y}}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \nu\left(\frac{\partial^{2}v_{y}}{\partial z^{2}} + \frac{\partial^{2}v_{y}}{\partial y^{2}}\right), \quad (50)$$

ხოლო მასის უწყვეტობის განტოლება კი ჩაიწერება შემდეგნაირად:

$$\frac{\partial v_z}{\partial z} + \frac{\partial v_y}{\partial y} = 0 \tag{51}$$

(49) და (55) განტოლებათა სისტემაში ტოლობის ორივე მხარე გადავამრავლეთ *p*ზე და მივიღებთ:

$$\rho \cdot \left(v_{z} \frac{\partial v_{z}}{\partial z} + v_{y} \frac{\partial v_{z}}{\partial y} \right) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^{2} v_{z}}{\partial z^{2}} + \frac{\partial^{2} v_{y}}{\partial y^{2}} \right), \quad (52)$$
$$\rho \cdot \left(v_{z} \frac{\partial v_{y}}{\partial z} + v_{y} \frac{\partial v_{y}}{\partial y} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^{2} v_{y}}{\partial z^{2}} + \frac{\partial^{2} v_{z}}{\partial y^{2}} \right), \quad (53)$$

სიჩქარის კომპონენტი Z-ის მიმართ წარმოადგენს მეორე რიგის წარმოებულს და ჩაითვლება ნულის ტ<mark>ოლად</mark>

$$\frac{\partial^2 v_z}{\partial z^2} = 0, \quad \frac{\partial^2 v_y}{\partial z^2} = 0, \quad \text{asdob dogotogeos:}$$

$$\rho \cdot \left(v_z \frac{\partial v_z}{\partial z} + v_y \frac{\partial v_z}{\partial y} \right) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 v_z}{\partial y^2} \right), \quad (54)$$

$$\rho \cdot \left(v_z \frac{\partial v_y}{\partial z} + v_y \frac{\partial v_y}{\partial y} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v_y}{\partial y^2} \right), \quad (55)$$

ვინაიდან თავიდანვე იყო დაშვებული, რომ გრძივი სიჩქარის პროფილი ლამინარულ<mark>ი რეჟიმისთ</mark>ვის მ<mark>ეორე, ხოლო ტურ</mark>ბულენტურისთვის მეოთხე რიგის პარაბოლური სახისაა. მაშინ ლამინარული რეჟიმისთვის ვიღებთ:

$$v_z(z, y) = 6 < v_z > \left(\frac{Y}{h} - \frac{Y^2}{h^2}\right),$$
 (56-5)

ხოლო ტურბულენტურისთვის:

$$v_Z(z, y) = 6 < v_Z > \left(\frac{Y}{h} - \frac{Y^4}{h^4}\right)$$
 (56-b)

განტოლებათა სისტემა (51), (54) და (55) ჩავწეროთ უგანზომილებო სიდიდეებში, თუ გავითვალისწინებთ, რომ:

$$< P > = -\frac{12\mu}{h} \cdot \frac{\nu_0}{p_F} < F >,$$
 (57)

და

$$R_e = \frac{2\rho v_0 h}{\mu} , \qquad (58)$$

მაშინ მივიღეზთ:

$$12\frac{\partial F}{\partial Z} + \frac{\partial^2 V_Z}{\partial Y^2} = \frac{R_e}{2} \left(V_Z \frac{\partial V_Z}{\partial Z} + V_Y \frac{\partial V_Z}{\partial Y} \right), \tag{59}$$

$$12\frac{\partial F}{\partial Y} + \frac{\partial^2 V_Y}{\partial Y^2} = \frac{R_e}{2} \left(V_Z \frac{\partial V_Y}{\partial Z} + V_Y \frac{\partial V_Y}{\partial Y} \right), \tag{60}$$

$$\frac{\partial V_Z}{\partial Z} + \frac{\partial V_Y}{\partial Y} = 0 \tag{61}$$

(56-ა) ლამინარული რეჟიმისთვის (გრძივი სიჩქარე) განტოლება უგანზომილებო სიდიდეებში მიიღებს სახეს:

$$V_Z(Z,Y) = 6 < V_Z > (Y - Y^2),$$
 (62-3)

ხოლო, (56-ð) ტურბულენტური რეჟიმისთვის (გრმივი სიჩქარე) განტოლება უგანზომილებო სიდიდეებში მიიღებს სახეს:

$$V_Z(Z,Y) = 6 < V_Z > (Y - Y^4),$$
 (62-ð)

სათანადო სასაზღვრო პირობებს უგანზომილებო სიდიდეებში ექნებათ სახე:

1)
$$Y = 0, V_Y(Z, 0) = 0;$$
 (63)

$$2)Y = 0, Y = 1, V_Z(Z, 0) = V_Z(Z, 1) = 0;$$
(64)

3)
$$Y = 1$$
, $V_y(Z, 1) = \zeta^2 F(Z, 1)$ (65)

ლამინარული რეჟიმისთვის განივი და გრძივი სიჩქარეების კომპონენტებს უგანზომილებო სიდიდეებში ექნება სახე:

$$V_Y(Z,Y) = \zeta \cdot G(Z) \cdot (3Y^2 - 2Y^3), \tag{66-s}$$

$$V_Z(Z,Y) = 6 < V(Z) > (Y - Y^2),$$
 (67-s)

ტურბულენტური რეჟიმისთვის განივი და გრმივი სიჩქარეების კომპონენტებს უგანზომილებო სიდიდეებში ექნება სახე:

$$V_Y(Z,Y) = \zeta \cdot G(Z) \cdot (3Y^2 - \frac{6}{5}Y^5), \tag{66-8}$$

$$V_Z(Z, Y) = 6 < V(Z) > (Y - Y^4),$$
 (67-b)

სადაც,

$$G(Z) = -(B \cdot \cosh(\zeta Z) + \sinh(\zeta Z)), \tag{68}$$

და

$$\langle V(Z) \rangle = \cosh(\zeta Z) + B \cdot \sinh(\zeta Z),$$
 (69)

ხოლო,

$$B = \frac{V_1 - \cosh\left(\zeta \frac{0.54}{h}\right)}{\sinh\left(\zeta \frac{0.54}{h}\right)},\tag{70}$$

ასევე, ტოლობების (68),(69) და (70) გათვალისწინებით (66-ა), (66-ბ), (67-ა) და (67-ბ) ტოლობები გადაიწერება შემდეგნაირად:

$$V_Y(Z,Y) = -\zeta \cdot \left(\frac{V_1 - \cosh\left(\zeta \frac{0.54}{h}\right)}{\sinh\left(\zeta \frac{0.54}{h}\right)} \cdot \cosh(\zeta Z) + \sinh\left(\zeta Z\right)\right) \cdot (3Y^2 - 2Y^3)$$
(71-5)

$$V_Y(Z,Y) = -\zeta \times \left(\frac{V_1 - \cosh\left(\zeta \frac{0.54}{h}\right)}{\sinh\left(\zeta \frac{0.54}{h}\right)} \cdot \cosh(\zeta Z) + \sinh\left(\zeta Z\right)\right) \times \left(3Y^2 - \frac{6}{5}Y^5\right),$$
(71-ð)

$$V_Z(Z,Y) = 6 \times \left(\cosh(\zeta Z) + \frac{V_1 - \cosh(\zeta \frac{0.54}{h})}{\sinh(\zeta \frac{0.54}{h})} \cdot \sinh(\zeta Z) \right) \times (Y - Y^2),$$
(72-s)

$$V_Z(Z,Y) = 6 \times \left(\cosh(\zeta Z) + \frac{V_1 - \cosh(\zeta \frac{0.54}{h})}{\sinh(\zeta \frac{0.54}{h})} \cdot \sinh(\zeta Z) \right) \cdot (Y - Y^4),$$
(72-b)

განზომილებიან სიდიდეში გადასაყვანად (72-ა) და (72-ბ) გავამრავლოთ v_0 -ზე, მაშინ მივიღებთ:

$$v_z(l, y) = V_z(L, Y) \cdot v_0 \tag{73}$$

სადაწნეო საკნებში < P > წნევის განსაზღვრისთვის F(Z,Y) მიიღებს სახეს:

$$F(Z,Y) = \frac{G(Z)}{\zeta} + \frac{\zeta G(Z)}{2} \cdot (Y - Y^2),$$
(74-s)

$$F(Z,Y) = \frac{G(Z)}{\zeta} + \frac{\zeta G(Z)}{2} \cdot (Y - Y^4), \tag{74-b}$$

სიჩქარის განივი კომპონენტი *V_Y(Z,Y*) უშუალოდ უკავშირდება ფილტრაციის მნიშვნელობის განსაზღვრას *Y* = 1-ის ტოლობის დროს, რაც ნიშნავს მემბრანის ზედაპირზე ფილტრაციის სიჩქარეს განუზომელ სიდიდეებში ლამინარული რეჟიმის დროს:

$$V_{\gamma}(Z,1) = -\zeta \cdot \left(\frac{V_1 - \cosh\left(\zeta \frac{0.54}{h}\right)}{\sinh\left(\zeta \frac{0.54}{h}\right)} \cdot \cosh(\zeta Z) + \sinh\left(\zeta Z\right)\right), \quad (75-s)$$

ხოლო ტურბულენტური რეჟიმის დროს

$$V_Y(Z,1) = -1.8 \zeta \cdot \left(\frac{V_1 - \cosh\left(\zeta \frac{0.54}{h}\right)}{\sinh\left(\zeta \frac{0.54}{h}\right)} \cdot \cosh(\zeta Z) + \sinh\left(\zeta Z\right)\right), \quad (75-\delta)$$

განზომილებიან ს<mark>იდიდეში გადასაყვანად (</mark>75-ა) და (75-ბ) გავამრავლოთ *v*₀ზე, მაშინ მივიღებთ:

$$v_y(z,h) = V_Y(Z,1) \cdot v_0,$$
 (76)

(75) არის ფილტრაციის სიჩქარე Z-ის მოცემული მნიშვნელობისთვის. ჩვენს შემთხვევაში Z-ის მნიშვნელობა იცვლება 0-დან 540-მდე. მოცემულ წერტილში სიჩქარის საშუალო მნიშვნელობის ნამრავლი საფილტრავ ფართზე განსაზღვრავს ფილტრატის რაოდენობას (მოცემული კოორდინატისთვის, ტემპერატურისთვის და წნევისთვის).

2.1.4.4 კონცენტრაციული პოლარიზაციის განსაზღვრა ნაკადის მოძრაობის ლამინარული და ტურბულენტური რეჟიმებისთვის

მემბრანის ზედაპირთან გამხსნელში შემავალი კომპონენტების კონცენტრაციის დამოკიდებულებით, გასაყოფ ხსნარში შემავალ კომპონენტების კონცენტრაციასთან ვღებულობთ კონცენტრაციულ პოლარიზაციას.

მემბრანის სასაზღვრო გამხსნელში შემავალი კომპონენტების გადატანა ზოლში დამოკიდებულია მოლეკულურ დიფუზიასა და კონვექციაზე. თუ ბირთვის დავუშვებთ, რომ სითხის ნაკადის კონცენტრაცია (საწყისი კონცენტრაცია) სადაწნეო საკნის მთელ სიგრძეზე უცვლელია, მაშინ მივიღებთ:

$$D \cdot \frac{dC}{dy} + C \quad G_1 = (1 - \varphi_R)C_3G_1,$$
 (77)

სასაზღვრო პირობების შემოტანით:

- 1) y = 0, $C = C_3$
- 2) $y = \delta_s$, $C = C_1$
- δ_s მემბრანის სასაზღვრო ფენის სისქე;
- (4.77) ტოლობის ინტეგრირებით ვიღებთ:

$$\frac{c_3}{c_1} = CP = \frac{\exp\left(G_1 \cdot \frac{\delta_S}{D}\right)}{\varphi_R + (1 - \varphi_R) \cdot exp\left(G_1 \cdot \frac{\delta_S}{D}\right)} , \qquad (78)$$

დამოკიდებულება *D/δ_s წ*არმოადგენს მასაგადაცემის კოეფიციენტს β-ს გახსნილი ნივთიერებისა მემბრანის ზედაპირიდან სითხის ნაკადის ბირთვში. შევიტანოთ β (77) ტოლობაში, მაშინ მივიღებთ:

$$CP = \frac{exp\left(\frac{G_1}{\beta}\right)}{\varphi_R + (1 - \varphi_R) \cdot exp\left(\frac{G_1}{\beta}\right)} , \qquad (79)$$

ამ დროს შესაძლებელია ხსნარში გახსნილი კომპონენტის სრულად მოხსნა, ამიტომ $\varphi_R = 1$. ამის გათვალისწინებით (79) მიიღებს სახეს:

$$CP = exp\left(\frac{G_1}{\beta}\right),\tag{80}$$

მასაგადაცემის კოეფიციენტის გამოთვლა შესაძლებელია კრიტერიალური ტოლობით, რომლის დროსაც ჩაიწერება შერვუდის კრიტერიუმის განმსაზღვრელი ტოლობა, შმიდტის კრიტერიუმის მაღალი მაჩვეპებლის დროს როდესაც,

$$Sc = \frac{v}{D} = \frac{0.010105 \cdot 10^{-4}}{3.84 \cdot 10^{-11}} = 26315.1$$
 (81)

და

$$Sc > 10000,$$
 (82)

ლამინარული მომრაობისთვ<mark>ის</mark> შერვუდ<mark>ის კრიტერია</mark>ლურ ტოლობას აქვს შემდეგი სახე:

$$Sh = 0,102 \, Re^{0.9} \cdot Sc^{0.33}, \tag{83}$$

ხოლო ტურბულენტური მომრაობისთვის შერვუდის კრიტერიალურ ტოლობას აქვს შემდეგი სახე:

$$Sh = 0,102 \, Re^{0.97} \cdot Sc^{0.33}, \tag{84}$$

მიღებული [45, 46, 75, 79, 83, 84] ტოლობები საშუალებას გვაძლევს თეორიულად გამოვთვალოთ სითხის ნაკადის გრძივი და განივი სიჩქარეების, წნევისა და კონცენტრაციული პოლარიზაციის სიდიდეები.

ბარომემბრანული გაყოფის პროცესის მათემატიკური აღწერა საშუალებას გვაძლევს შევადაროთ ლამინარული და ტურბულენტური რეჟიმის პირობებში ნაკადის სიჩქარისა და კონცენტრაციული პოლარიზაციის მნიშვნელობები და მოვახდინოთ მათი ოპტიმიზაცია.

ცხრილი 1. ერთგანზომილებიან სისტემაში 20 ⁰C სიჩქარის (Vz20) გრძივი მაჩვენებლების საანგარიშო ალგორითმი

N	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.879225	1.412068	0.996964	1.4120683	0.9969638	-0.444899	-0.44355	0.96852	0.52610
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.439612	1.098196	0.45391	1.4120683	0.9969638	-0.444899	-0.20194	0.89625	0.48684
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4120683	0.9969638	-0.444899	0.00000	1.00000	0.54320
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.29656	1.044297	0.300926	1.0442971	0.3009261	-0.27037	-0.08136	0.96294	0.52220
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14828	1.011014	0.148824	1.0442971	0.3009261	-0.27037	-0.04024	0.97078	0.52645
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0442971	0.3009261	-0.27037	0.00000	1.00000	0.54230
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234754	1.027681	0.236916	1.0276814	0.2369158	-0.302805	-0.07174	0.95594	0.51640
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117377	1.006897	0.117646	1.0276814	0.2369158	-0.302805	-0.03562	0.97127	0.52468
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0276814	0.2369158	-0.302805	0.00000	1.00000	0.54020
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208813	1.021881	0.210333	1.0218807	0.2103334	-0.351309	-0.07389	0.94799	0.50670
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406	1.005455	0.104596	1.0218807	0.2103334	-0.351309	-0.03675	0.96871	0.51778
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.0218807	0.2103334	-0.351309	0.00000	1.00000	0.53450
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188	1.018914	0.195411	1.0189139	0.1954111	-0.397928	-0.07776	0.94115	0.49900
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094	1.004717	0.097247	1.0189139	0.1954111	-0.397928	-0.03870	0.96602	0.51218
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.0189139	0.1954111	-0.397928	0.00000	1.00000	0.53020
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.017112	0.185787	1.0171119	0.1857867	-0.44984	-0.08357	0.93354	0.48740
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.004269	0.092498	1.0171119	0.1857867	-0.44984	-0.04161	0.96266	0.50260
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.0171119	0.1857867	-0.44984	0.00000	1.00000	0.52210
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178098	1.015901	0.179041	1.0159014	0.179041	-0.507549	-0.09087	0.92503	0.47380
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089049	1.003967	0.089167	1.0159014	0.179041	-0.507549	-0.04526	0.95871	0.49105
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.0159014	0.179041	-0.507549	0.00000	1.00000	0.51220
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.173854	1.0150002	0.1738544	-0.572472	-0.09953	0.91547	0.46030
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495	1.003743	0.086603	1.0150002	0.1738544	-0.572472	-0.04958	0.95417	0.47975
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.0150002	0.1738544	-0.572472	0.00000	1.00000	0.50280
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.01435	0.170016	1.0143497	0.1700155	-0.632412	-0.10752	0.90683	0.44480
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603	1.003581	0.084704	1.0143497	0.1700155	-0.632412	-0.05357	0.95001	0.46598
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143497	0.1700155	-0.632412	0.00000	1.00000	0.49050
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195	1.013842	0.166961	1.0138423	0.1669614	-0.708196	-0.11824	0.89560	0.42550
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083098	1.003455	0.083193	1.0138423	0.1669614	-0.708196	-0.05892	0.94454	0.44875
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138423	0.1669614	-0.708196	0.00000	1.00000	0.47510
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.013435	0.164473	1.0134354	0.1644726	-0.795339	-0.13081	0.88262	0.40230
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.08187	1.003353	0.081961	1.0134354	0.1644726	-0.795339	-0.06519	0.93817	0.42762
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134354	0.1644726	-0.795339	0.00000	1.00000	0.45580
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699	1.013102	0.162405	1.0131018	0.1624048	-0.896325	-0.14557	0.86753	0.37330
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.08085	1.00327	0.080938	1.0131018	0.1624048	-0.896325	-0.07255	0.93072	0.40049
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131018	0.1624048	-0.896325	0.00000	1.00000	0.43030
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859	1.012805	0.160541	1.0128047	0.1605408	-1.017483	-0.16335	0.84946	0.34420
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929	1.003196	0.080015	1.0128047	0.1605408	-1.017483	-0.08141	0.92178	0.37351
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128047	0.1605408	-1.017483	0.00000	1.00000	0.40520
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.158392	1.01257	0.159055	1.0125703	0.1590552	-1.179321	-0.18758	0.82499	0.30170
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196	1.003138	0.079279	1.0125703	0.1590552	-1.179321	-0.09350	0.90964	0.33266
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0125703	0.1590552	-1.179321	0.00000	1.00000	0.36570
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122	1.012369	0.15777	1.0123691	0.1577696	-1.495037	-0.23587	0.77650	0.23590
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	771.428	0.078561	1.003088	0.078642	1.0123691	0.1577696	-1.495037	-0.11757	0.88551	0.26902
45	1.5	-	0.101839	770	0.3038	0.2359	0	0	0	1	0	1.0123691	0.1577696	-1.495037	0.00000	1.00000	0.30380

ნახაზი 4.20 ºC სიჩქარის (Vz20) გრძივი მაჩვენებლის გრაფიკული გამოსახულება,

dp	1	11
0.2	0.54	0.52220
0.2	0.27	0.52645
0.2	0.00	0.54230
0.3	0.54	0.51640
0.3	0.27	0.52468
0.3	0.00	0.54020
0.4	0.54	0.50670
0.4	0.27	0.51778
0.4	0.00	0.53450
0.5	0.54	0.49900
0.5	0.27	0.51218
0.5	0.00	0.53020
0.6	0.54	0.48740
0.6	0.27	0.50260
0.6	0.00	0.52210
0.7	0.54	0.47380
0.7	0.27	0.49105
0.7	0.00	0.51220
0.8	0.54	0.46030
0.8	0.27	0.47975
0.8	0.00	0.50280

-		0	2	1		1	1			1								
N	dp	t, °C	ζ x 10 °	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11	12
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.879225	1.412068	0.996964	1.4120683	0.9969638	-0.444899	-0.44355	0.96852	0.52610	0.42351
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.439612	1.098196	0.45391	1.4120683	0.9969638	-0.444899	-0.20194	0.89625	0.48684	0.39191
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4120683	0.9969638	-0.444899	0.00000	1.00000	0.54320	0.43728
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.29656	1.044297	0.300926	1.0442971	0.3009261	-0.27037	-0.08136	0.96294	0.52220	0.42037
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻⁵	771.428	0.14828	1.011014	0.148824	1.0442971	0.3009261	-0.27037	-0.04024	0.97078	0.52645	0.42379
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0442971	0.3009261	-0.27037	0.00000	1.00000	0.54230	0.43655
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234754	1.027681	0.236916	1.0276814	0.2369158	-0.302805	-0.07174	0.95594	0.51640	0.41570
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117377	1.006897	0.117646	1.0276814	0.2369158	-0.302805	-0.03562	0.97127	0.52468	0.42237
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0276814	0.2369158	-0.302805	0.00000	1.00000	0.54020	0.43486
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208813	1.021881	0.210333	1.0218807	0.2103334	-0.351309	-0.07389	0.94799	0.50670	0.40789
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406	1.005455	0.104596	1.0218807	0.2103334	-0.351309	-0.03675	0.96871	0.51778	0.41681
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.0218807	0.2103334	-0.351309	0.00000	1.00000	0.53450	0.43027
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188	1.018914	0.195411	1.0189139	0.1954111	-0.397928	-0.07776	0.94115	0.49900	0.40170
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094	1.004717	0.097247	1.0189139	0.1954111	-0.397928	-0.03870	0.96602	0.51218	0.41231
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.0189139	0.1954111	-0.397928	0.00000	1.00000	0.53020	0.42681
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.017112	0.185787	1.0171119	0.1857867	-0.44984	-0.08357	0.93354	0.48740	0.39236
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.004269	0.092498	1.0171119	0.1857867	-0.44984	-0.04161	0.96266	0.50260	0.40460
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.0171119	0.1857867	-0.44984	0.00000	1.00000	0.52210	0.42029
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178098	1.015901	0.179041	1.0159014	0.179041	-0.507549	-0.09087	0.92503	0.47380	0.38141
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089049	1.003967	0.089167	1.0159014	0.179041	-0.507549	-0.04526	0.95871	0.49105	0.39530
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.0159014	0.179041	-0.507549	0.00000	1.00000	0.51220	0.41232
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.173854	1.0150002	0.1738544	-0.572472	-0.09953	0.91547	0.46030	0.37054
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495	1.003743	0.086603	1.0150002	0.1738544	-0.572472	-0.04958	0.95417	0.47975	0.38620
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.0150002	0.1738544	-0.572472	0.00000	1.00000	0.50280	0.40475
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.01435	0.170016	1.0143497	0.1700155	-0.632412	-0.10752	0.90683	0.44480	0.35806
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603	1.003581	0.084704	1.0143497	0.1700155	-0.632412	-0.05357	0.95001	0.46598	0.37511
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143497	0.1700155	-0.632412	0.00000	1.00000	0.49050	0.39485
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195	1.013842	0.166961	1.0138423	0.1669614	-0.708196	-0.11824	0.89560	0.42550	0.34253
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083098	1.003455	0.083193	1.0138423	0.1669614	-0.708196	-0.05892	0.94454	0.44875	0.36124
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138423	0.1669614	-0.708196	0.00000	1.00000	0.47510	0.38246
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.013435	0.164473	1.0134354	0.1644726	-0.795339	-0.13081	0.88262	0.40230	0.32385
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.08187	1.003353	0.081961	1.0134354	0.1644726	-0.795339	-0.06519	0.93817	0.42762	0.34423
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134354	0.1644726	-0.795339	0.00000	1.00000	0.45580	0.36692
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699	1.013102	0.162405	1.0131018	0.1624048	-0.896325	-0.14557	0.86753	0.37330	0.30051
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.08085	1.00327	0.080938	1.0131018	0.1624048	-0.896325	-0.07255	0.93072	0.40049	0.32239
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131018	0.1624048	-0.896325	0.00000	1.00000	0.43030	0.34639
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859	1.012805	0.160541	1.0128047	0.1605408	-1.017483	-0.16335	0.84946	0.34420	0.27708
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929	1.003196	0.080015	1.0128047	0.1605408	-1.017483	-0.08141	0.92178	0.37351	0.30067
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128047	0.1605408	-1.017483	0.00000	1.00000	0.40520	0.32619
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.158392	1.01257	0.159055	1.0125703	0.1590552	-1.179321	-0.18758	0.82499	0.30170	0.24287
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196	1.003138	0.079279	1.0125703	0.1590552	-1.179321	-0.09350	0.90964	0.33266	0.26779
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0125703	0.1590552	-1.179321	0.00000	1.00000	0.36570	0.29439
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122	1.012369	0.15777	1.0123691	0.1577696	-1.495037	-0.23587	0.77650	0.23590	0.18990
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	771.428	0.078561	1.003088	0.078642	1.0123691	0.1577696	-1.495037	-0.11757	0.88551	0.26902	0.21656
45	1.5	-	0.101839	770	0.3038	0.2359	0	0	0	1	0	1.0123691	0.1577696	-1.495037	0.0000	1.00000	0.30380	0.24456

ცხრილი 2. ორგანზომილებიან სისტემაში 20 ⁰C სიჩქარის Vz(Z,Y) გრძივი მაჩვენებლების საანგარიშო ალგორითმი,(ლამინ. რეჟ.)

ნახაზი 5.ორგანზომილებიან სისტემაში 20 ºC სიჩქარის Vz(Z,Y) გრძივი მაჩვენებლების გრაფიკული გამოსახულება,(ლამინ. რეჟ.)

dp

0.2

0.2

0.2

0.3

0.3

0.3 0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8 0.8 1

0.54

0.27

0.00

0.54

0.27

0.00

0.54

0.27

0.00

0.54

0.27

0.00

0.54

0.27

0.00

0.54

0.27

0.00

0.54

0.27

0.00

0.40475

0		0.01				00,000	2000/ 20	0,000,00		(_, _)0			00000				J	. ,
Ν	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11	12
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.879225	1.412068	0.996964	1.4120683	0.9969638	-0.444899	-0.44355	0.96852	0.52610	0.54294
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.439612	1.098196	0.45391	1.4120683	0.9969638	-0.444899	-0.20194	0.89625	0.48684	0.50242
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4120683	0.9969638	-0.444899	0.00000	1.00000	0.54320	0.56058
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.29656	1.044297	0.300926	1.0442971	0.3009261	-0.27037	-0.08136	0.96294	0.52220	0.53891
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14828	1.011014	0.148824	1.0442971	0.3009261	-0.27037	-0.04024	0.97078	0.52645	0.54330
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0442971	0.3009261	-0.27037	0.00000	1.00000	0.54230	0.55965
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234754	1.027681	0.236916	1.0276814	0.2369158	-0.302805	-0.07174	0.95594	0.51640	0.53292
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117377	1.006897	0.117646	1.0276814	0.2369158	-0.302805	-0.03562	0.97127	0.52468	0.54147
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0276814	0.2369158	-0.302805	0.00000	1.00000	0.54020	0.55749
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208813	1.021881	0.210333	1.0218807	0.2103334	-0.351309	-0.07389	0.94799	0.50670	0.52291
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406	1.005455	0.104596	1.0218807	0.2103334	-0.351309	-0.03675	0.96871	0.51778	0.53434
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.0218807	0.2103334	-0.351309	0.00000	1.00000	0.53450	0.55160
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188	1.018914	0.195411	1.0189139	0.1954111	-0.397928	-0.07776	0.94115	0.49900	0.51497
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094	1.004717	0.097247	1.0189139	0.1954111	-0.397928	-0.03870	0.96602	0.51218	0.52857
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.0189139	0.1954111	-0.397928	0.00000	1.00000	0.53020	0.54717
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.017112	0.185787	1.0171119	0.1857867	-0.44984	-0.08357	0.93354	0.48740	0.50300
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.004269	0.092498	1.0171119	0.1857867	-0.44984	-0.04161	0.96266	0.50260	0.51869
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.0171119	0.1857867	-0.44984	0.00000	1.00000	0.52210	0.53881
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178098	1.015901	0.179041	1.0159014	0.179041	-0.507549	-0.09087	0.92503	0.47380	0.48896
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089049	1.003967	0.089167	1.0159014	0.179041	-0.507549	-0.04526	0.95871	0.49105	0.50677
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.0159014	0.179041	-0.507549	0.00000	1.00000	0.51220	0.52859
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.173854	1.0150002	0.1738544	-0.572472	-0.09953	0.91547	0.46030	0.47503
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495	1.003743	0.086603	1.0150002	0.1738544	-0.572472	-0.04958	0.95417	0.47975	0.49511
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.0150002	0.1738544	-0.572472	0.00000	1.00000	0.50280	0.51889
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.01435	0.170016	1.0143497	0.1700155	-0.632412	-0.10752	0.90683	0.44480	0.45903
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603	1.003581	0.084704	1.0143497	0.1700155	-0.632412	-0.05357	0.95001	0.46598	0.48089
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143497	0.1700155	-0.632412	0.00000	1.00000	0.49050	0.50620
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195	1.013842	0.166961	1.0138423	0.1669614	-0.708196	-0.11824	0.89560	0.42550	0.43912
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083098	1.003455	0.083193	1.0138423	0.1669614	-0.708196	-0.05892	0.94454	0.44875	0.46311
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138423	0.1669614	-0.708196	0.00000	1.00000	0.47510	0.49030
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.013435	0.164473	1.0134354	0.1644726	-0.795339	-0.13081	0.88262	0.40230	0.41517
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.08187	1.003353	0.081961	1.0134354	0.1644726	-0.795339	-0.06519	0.93817	0.42762	0.44130
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134354	0.1644726	-0.795339	0.00000	1.00000	0.45580	0.47039
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699	1.013102	0.162405	1.0131018	0.1624048	-0.896325	-0.14557	0.86753	0.37330	0.38525
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.08085	1.00327	0.080938	1.0131018	0.1624048	-0.896325	-0.07255	0.93072	0.40049	0.41331
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131018	0.1624048	-0.896325	0.00000	1.00000	0.43030	0.44407
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859	1.012805	0.160541	1.0128047	0.1605408	-1.017483	-0.16335	0.84946	0.34420	0.35521
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929	1.003196	0.080015	1.0128047	0.1605408	-1.017483	-0.08141	0.92178	0.37351	0.38546
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128047	0.1605408	-1.017483	0.00000	1.00000	0.40520	0.41817
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.158392	1.01257	0.159055	1.0125703	0.1590552	-1.179321	-0.18758	0.82499	0.30170	0.31135
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196	1.003138	0.079279	1.0125703	0.1590552	-1.179321	-0.09350	0.90964	0.33266	0.34330
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0125703	0.1590552	-1.179321	0.00000	1.00000	0.36570	0.37740
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122	1.012369	0.15777	1.0123691	0.1577696	-1.495037	-0.23587	0.77650	0.23590	0.24345
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	771.428	0.078561	1.003088	0.078642	1.0123691	0.1577696	-1.495037	-0.11757	0.88551	0.26902	0.27763
45	1.5	-	0.101839	770	0.3038	0.2359	0	0	0	1	0	1.0123691	0.1577696	-1.495037	0.00000	1.00000	0.30380	0.31352

ცხრილი 3. ორგანზომილებიან სისტემაში 20 ⁰C სიჩქარის Vz(Z,Y)გრძივი მაჩვენებლების საანგარიშო ალგორითმი, (ტურბ. რეჟ.)

ნახაზი 6.ორგანზომილებიან სისტემაში 20 ⁰C სიჩქარის Vz(Z,Y) გრძივი მაჩვენებლების გრაფიკული გამოსახულება,(ტურბ. რეჟ.)

0.2 0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5 0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

Gor					00000		0000/ 20		000	~ <u>0</u> ~ ·)	,,00		,00,0000	000000	~~~~~ O.			00.7	
Ν	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.879225	1.4121	0.99696	1.4121	0.99696	-0.4449	-0.62823	0.36874	-2.10131	-1.141	-2054.6
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.439612	1.0982	0.45391	1.4121	0.99696	-0.4449	-0.48859	-0.03468	0.19761	0.1073	193.22
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4121	0.99696	-0.4449	-0.44490	-0.44490	2.53534	1.3772	2479
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.29656	1.0443	0.30093	1.0443	0.30093	-0.27037	-0.28235	0.01858	-0.03571	-0.019	-34.86
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14828	1.011	0.14882	1.0443	0.30093	-0.27037	-0.27335	-0.12452	0.23935	0.1298	233.64
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0443	0.30093	-0.27037	-0.27037	-0.27037	0.51969	0.2818	507.29
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻⁵	1542.857	0.234754	1.0277	0.23692	1.0277	0.23692	-0.3028	-0.31119	-0.07427	0.11301	0.061	109.88
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117377	1.0069	0.11765	1.0277	0.23692	-0.3028	-0.30489	-0.18725	0.28491	0.1539	277.03
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0277	0.23692	-0.3028	-0.30280	-0.30280	0.46073	0.2489	448
10	0.4	-	0.135342	299	0.5345	0.5067	540X10 ⁻³	1542.857	0.208813	1.0219	0.21033	1.0219	0.21033	-0.35131	-0.35900	-0.14866	0.20120	0.1075	193.58
11	0.4	-	0.135342	299	0.5345	0.5067	270x10	//1.428	0.104406	1.0055	0.1046	1.0219	0.21033	-0.35131	-0.35322	-0.24863	0.33650	0.1799	323.74
12	0.4	-	0.135342	299	0.5345	0.5067	U F 40v 10 ⁻³	1542.057	0 104199	1 01 90	0 105 41	1.0219	0.21033	-0.35131	-0.35131	-0.35131	0.4/54/	0.2541	457.45
13	0.5	-	0.125863	342	0.5302	0.499	270×10 ⁻³	1542.857	0.194188	1.0189	0.19541	1.0189	0.19541	-0.39793	-0.40545	-0.21004	0.20437	0.1402	252.5
14	0.5	-	0.125803	342	0.5302	0.499	270X10	//1.428	0.097094	1.0047	0.09725	1.0189	0.19541	-0.39793	-0.39981	-0.30256	0.58081	0.2019	303.43
15	0.5	-	0.123603	34Z	0.5502	0.499	0 E40v10 ⁻³	1542 057	0 194724	1 0171	0 19570	1.0109	0.19541	-0.59795	-0.59795	-0.39795	0.30064	0.2055	205 70
10	0.0	-	0.119735	205	0.5221	0.4674	270×10^{-3}	771 / 20	0.104754	1.01/1	0.10379	1.0171	0.10579	-0.44964	-0.45754	-0.27175	0.32336	0.1099	404.26
18	0.0		0.119735	385	0.5221	0.4874	270X10	0	0.092307	1.0043	0.0923	1.0171	0.18579	-0.44984	-0.43170	-0.33920	0.43010	0.2240	506.18
10	0.0		0.115/33	128	0.5221	0.4074	540×10^{-3}	15/12 857	0 178098	1 0159	0 17904	1.0171	0.10070	-0.44504	-0.44504	-0.33658	0.33802	0.2012	358 21
20	0.7	-	0.115434	428	0.5122	0.4738	270×10^{-3}	771 428	0.178038	1 004	0.17504	1.0159	0.17904	-0.50755	-0.51502	-0.33038	0.38653	0.155	447 41
20	0.7	-	0.115434	428	0.5122	0.4738	0	0	0.005045	1.004	0.00517	1.0159	0.17904	-0 50755	-0 50755	-0 50755	0.58588	0.2400	540.16
22	0.8	_	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542,857	0.172990	1.015	0.17385	1.015	0.17385	-0.57247	-0.58106	-0.40721	0.45657	0.2296	413.22
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495	1.0037	0.0866	1.015	0.17385	-0.57247	-0.57462	-0.48801	0.54718	0.2751	495.22
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.015	0.17385	-0.57247	-0.57247	-0.57247	0.64188	0.3227	580.92
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.0143	0.17002	1.0143	0.17002	-0.63241	-0.64149	-0.47147	0.51707	0.2536	456.52
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603	1.0036	0.0847	1.0143	0.17002	-0.63241	-0.63468	-0.54997	0.60316	0.2959	532.53
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143	0.17002	-0.63241	-0.63241	-0.63241	0.69357	0.3402	612.36
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195	1.0138	0.16696	1.0138	0.16696	-0.7082	-0.71800	-0.55104	0.59357	0.282	507.61
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083098	1.0035	0.08319	1.0138	0.16696	-0.7082	-0.71064	-0.62745	0.67588	0.3211	578
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138	0.16696	-0.7082	-0.70820	-0.70820	0.76286	0.3624	652.38
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.0134	0.16447	1.0134	0.16447	-0.79534	-0.80602	-0.64155	0.68086	0.3103	558.61
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.08187	1.0034	0.08196	1.0134	0.16447	-0.79534	-0.79801	-0.71604	0.75992	0.3464	623.47
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134	0.16447	-0.79534	-0.79534	-0.79534	0.84408	0.3847	692.51
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699	1.0131	0.1624	1.0131	0.1624	-0.89633	-0.90807	-0.74566	0.78149	0.3363	605.3
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.08085	1.0033	0.08094	1.0131	0.1624	-0.89633	-0.89926	-0.81832	0.85764	0.369	664.28
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131	0.1624	-0.89633	-0.89633	-0.89633	0.93939	0.4042	727.6
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859	1.0128	0.16054	1.0128	0.16054	-1.01748	-1.03051	-0.86997	0.90140	0.3652	657.44
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929	1.0032	0.08001	1.0128	0.16054	-1.01748	-1.02074	-0.94072	0.97470	0.3949	710.91
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128	0.16054	-1.01748	-1.01748	-1.01748	1.05424	0.4272	768.92
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.158392	1.0126	0.15906	1.0126	0.15906	-1.17932	-1.19414	-1.03509	1.06264	0.3886	699.49
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196	1.0031	0.07928	1.0126	0.15906	-1.17932	-1.18302	-1.10374	1.13312	0.4144	745.89
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0126	0.15906	-1.17932	-1.17932	-1.17932	1.21071	0.4428	796.96
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122	1.0124	0.15777	1.0124	0.15777	-1.49504	-1.51353	-1.35576	1.38069	0.4195	755.01
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	//1.428	0.078561	1.0031	0.07864	1.0124	0.15777	-1.49504	-1.49965	-1.42101	1.44714	0.4396	/91.35
45	1.5	-	0.101839	770	0.3038	0.2359	0	U	U	1	0	1.0124	0.15777	-1.49504	-1.49504	-1.49504	1.52252	0.4625	832.58

ცხრილი 4. ორგანზომილებიან სისტემაში 20 ⁰C სიჩქარის განივი Vy მაჩვენებლების საანგარიშო ალგორითმი,(ლამ. რეჟ.)

ნახაზი 7. 20 ⁰C სიჩქარის (Vy20) გრძივი მაჩვენებლის გრაფიკული გამოსახულება, (ლამ. რეჟ)

ცხრილი 5. ორგანზომილებიან სისტემაში 20 C სიჩქარის განივი Vy(20) მაჩვენებლების საანგარიშო ალგორითმი,(ტურბ. რეჟ.)

N	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.879225	1.4121	0.99696	1.4121	0.99696	-0.4449	-0.62823	0.36874	-3.78235	-2.055	-3698.2
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.439612	1.0982	0.45391	1.4121	0.99696	-0.4449	-0.48859	-0.03468	0.35570	0.1932	347.79
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4121	0.99696	-0.4449	-0.44490	-0.44490	4.56361	2.479	4462.1
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.29656	1.0443	0.30093	1.0443	0.30093	-0.27037	-0.28235	0.01858	-0.06428	-0.035	-62.747
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14828	1.011	0.14882	1.0443	0.30093	-0.27037	-0.27335	-0.12452	0.43084	0.2336	420.56
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0443	0.30093	-0.27037	-0.27037	-0.27037	0.93545	0.5073	913.13
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234754	1.0277	0.23692	1.0277	0.23692	-0.3028	-0.31119	-0.07427	0.20341	0.1099	197.79
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117377	1.0069	0.11765	1.0277	0.23692	-0.3028	-0.30489	-0.18725	0.51283	0.277	498.65
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0277	0.23692	-0.3028	-0.30280	-0.30280	0.82932	0.448	806.4
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208813	1.0219	0.21033	1.0219	0.21033	-0.35131	-0.35900	-0.14866	0.36216	0.1936	348.44
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406	1.0055	0.1046	1.0219	0.21033	-0.35131	-0.35322	-0.24863	0.60570	0.3237	582.74
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.0219	0.21033	-0.35131	-0.35131	-0.35131	0.85584	0.4574	823.4
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188	1.0189	0.19541	1.0189	0.19541	-0.39793	-0.40545	-0.21004	0.47586	0.2523	454.14
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094	1.0047	0.09725	1.0189	0.19541	-0.39793	-0.39981	-0.30256	0.68546	0.3634	654.17
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.0189	0.19541	-0.39793	-0.39793	-0.39793	0.90152	0.478	860.37
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.0171	0.18579	1.0171	0.18579	-0.44984	-0.45754	-0.27175	0.58569	0.3058	550.42
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.0043	0.0925	1.0171	0.18579	-0.44984	-0.45176	-0.35926	0.77429	0.4043	727.67
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.0171	0.18579	-0.44984	-0.44984	-0.44984	0.96951	0.5062	911.13
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178098	1.0159	0.17904	1.0159	0.17904	-0.50755	-0.51562	-0.33658	0.69935	0.3582	644.77
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089049	1.004	0.08917	1.0159	0.17904	-0.50755	-0.50956	-0.42040	0.87350	0.4474	805.34
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.0159	0.17904	-0.50755	-0.50755	-0.50755	1.05459	0.5402	972.29
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.17385	1.015	0.17385	-0.57247	-0.58106	-0.40721	0.82183	0.4132	743.79
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495	1.0037	0.0866	1.015	0.17385	-0.57247	-0.57462	-0.48801	0.98492	0.4952	891.39
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.015	0.17385	-0.57247	-0.57247	-0.57247	1.15538	0.5809	1045.7
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.0143	0.17002	1.0143	0.17002	-0.63241	-0.64149	-0.47147	0.93072	0.4565	821.74
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603	1.0036	0.0847	1.0143	0.17002	-0.63241	-0.63468	-0.54997	1.08569	0.5325	958.56
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143	0.17002	-0.63241	-0.63241	-0.63241	1.24843	0.6124	1102.2
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195	1.0138	0.16696	1.0138	0.16696	-0.7082	-0.71800	-0.55104	1.06843	0.5076	913.7
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083098	1.0035	0.08319	1.0138	0.16696	-0.7082	-0.71064	-0.62745	1.21659	0.578	1040.4
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138	0.16696	-0.7082	-0.70820	-0.70820	1.37315	0.6524	1174.3
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.0134	0.16447	1.0134	0.16447	-0.79534	-0.80602	-0.64155	1.22556	0.5586	1005.5
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.08187	1.0034	0.08196	1.0134	0.16447	-0.79534	-0.79801	-0.71604	1.36786	0.6235	1122.2
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134	0.16447	-0.79534	-0.79534	-0.79534	1.51934	0.6925	1246.5
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699	1.0131	0.1624	1.0131	0.1624	-0.89633	-0.90807	-0.74566	1.40669	0.6053	1089.5
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.08085	1.0033	0.08094	1.0131	0.1624	-0.89633	-0.89926	-0.81832	1.54375	0.6643	1195.7
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131	0.1624	-0.89633	-0.89633	-0.89633	1.69091	0.7276	1309.7
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859	1.0128	0.16054	1.0128	0.16054	-1.01748	-1.03051	-0.86997	1.62252	0.6574	1183.4
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929	1.0032	0.08001	1.0128	0.16054	-1.01748	-1.02074	-0.94072	1.75447	0.7109	1279.6
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128	0.16054	-1.01748	-1.01748	-1.01748	1.89763	0.7689	1384.1
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.158392	1.0126	0.15906	1.0126	0.15906	-1.17932	-1.19414	-1.03509	1.91275	0.6995	1259.1
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196	1.0031	0.07928	1.0126	0.15906	-1.17932	-1.18302	-1.10374	2.03961	0.7459	1342.6
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0126	0.15906	-1.17932	-1.17932	-1.17932	2.17928	0.797	1434.5
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122	1.0124	0.15777	1.0124	0.15777	-1.49504	-1.51353	-1.35576	2.48524	0.755	1359
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	771.428	0.078561	1.0031	0.07864	1.0124	0.15777	-1.49504	-1.49965	-1.42101	2.60485	0.7914	1424.4
45	1.5	-	0.101839	770	0.3038	0.2359	0	0	0	1	0	1.0124	0.15777	-1.49504	-1.49504	-1.49504	2.74054	0.8326	1498.6

dp	Z	13
0.3	0.54	197.790
0.3	0.27	498.654
0.3	0.00	806.396
0.4	0.54	348.437
0.4	0.27	582.741
0.4	0.00	823.403
0.5	0.54	454.142
0.5	0.27	654.172
0.5	0.00	860.373
0.6	0.54	550.416
0.6	0.27	727.665
0.6	0.00	911.126
0.7	0.54	644.770
0.7	0.27	805.335
0.7	0.00	972.291
0.8	0.54	743.789
0.8	0.27	891.388
0.8	0.00	1045.660
0.9	0.54	821.736
0.9	0.27	958.556
0.9	0.00	1102.241

ნახაზი 7. 20 ℃ სიჩქარის (Vy20) გრძივი მაჩვენებლის გრაფიკული გამოსახულება, (ტურბ რეჟ)

0-		0	U		Ū			00 ×	<i>'</i> (0	0	~ 0			00	00 /	
Ν	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11	12
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.879225	1.41207	0.99696	1.412068	0.996964	-0.4449	-0.62823	0.36874	0.33008	-0.12171
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.439612	1.0982	0.45391	1.412068	0.996964	-0.4449	-0.48859	-0.03468	0.33008	0.011446
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.412068	0.996964	-0.4449	-0.44490	-0.44490	0.33008	0.146853
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.29656	1.0443	0.30093	1.044297	0.300926	-0.27037	-0.28235	0.01858	0.97698	-0.01815
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14828	1.01101	0.14882	1.044297	0.300926	-0.27037	-0.27335	-0.12452	0.97698	0.121658
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.044297	0.300926	-0.27037	-0.27037	-0.27037	0.97698	0.264147
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234754	1.02768	0.23692	1.027681	0.236916	-0.3028	-0.31119	-0.07427	1.22943	0.09131
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117377	1.0069	0.11765	1.027681	0.236916	-0.3028	-0.30489	-0.18725	1.22943	0.230206
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.027681	0.236916	-0.3028	-0.30280	-0.30280	1.22943	0.372276
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208813	1.02188	0.21033	1.021881	0.210333	-0.35131	-0.35900	-0.14866	1.36758	0.203306
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406	1.00546	0.1046	1.021881	0.210333	-0.35131	-0.35322	-0.24863	1.36758	0.340019
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.021881	0.210333	-0.35131	-0.35131	-0.35131	1.36758	0.480441
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188	1.01891	0.19541	1.018914	0.195411	-0.39793	-0.40545	-0.21004	1.45874	0.306398
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094	1.00472	0.09725	1.018914	0.195411	-0.39793	-0.39981	-0.30256	1.45874	0.441353
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.018914	0.195411	-0.39793	-0.39793	-0.39793	1.45874	0.580473
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.01711	0.18579	1.017112	0.185787	-0.44984	-0.45754	-0.27175	1.50996	0.410334
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.00427	0.0925	1.017112	0.185787	-0.44984	-0.45176	-0.35926	1.50996	0.542473
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.017112	0.185787	-0.44984	-0.44984	-0.44984	1.50996	0.679242
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178098	1.0159	0.17904	1.015901	0.179041	-0.50755	-0.51562	-0.33658	1.53653	0.517164
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089049	1.00397	0.08917	1.015901	0.179041	-0.50755	-0.50956	-0.42040	1.53653	0.645951
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.015901	0.179041	-0.50755	-0.50755	-0.50755	1.53653	0.779864
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.17385	1.015	0.173854	-0.57247	-0.58106	-0.40721	1.55287	0.632335
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495	1.00374	0.0866	1.015	0.173854	-0.57247	-0.57462	-0.48801	1.55287	0.757817
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.015	0.173854	-0.57247	-0.57247	-0.57247	1.55287	0.888972
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.01435	0.17002	1.01435	0.170016	-0.63241	-0.64149	-0.47147	1.54875	0.730192
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603	1.00358	0.0847	1.01435	0.170016	-0.63241	-0.63468	-0.54997	1.54875	0.85177
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.01435	0.170016	-0.63241	-0.63241	-0.63241	1.54875	0.979448
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195	1.01384	0.16696	1.013842	0.166961	-0.7082	-0.71800	-0.55104	1.52731	0.841603
29	1	-	0.107719	556	0.4751	0.4255	270x10 [°]	771.428	0.083098	1.00345	0.08319	1.013842	0.166961	-0.7082	-0.71064	-0.62745	1.52731	0.958307
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.013842	0.166961	-0.7082	-0.70820	-0.70820	1.52731	1.081633
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163/40	1.01344	0.16447	1.013435	0.164473	-0.79534	-0.80602	-0.64155	1.48724	0.954139
32	1.1	-	0.106128	599	0.4558	0.4023	270x10	//1.428	0.08187	1.00335	0.08196	1.013435	0.164473	-0.79534	-0.79801	-0.71604	1.48724	1.064926
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.013435	0.164473	-0.79534	-0.79534	-0.79534	1.48724	1.182856
34	1.2	-	0.104805	642	0.4303	0.3733	540x10	1542.857	0.161699	1.0131	0.1624	1.013102	0.162405	-0.89633	-0.90807	-0.74566	1.42175	1.060149
35	1.2	-	0.104805	642	0.4303	0.3733	270x10	//1.428	0.08085	1.00327	0.08094	1.013102	0.162405	-0.89633	-0.89926	-0.81832	1.42175	1.163446
30	1.2	-	0.104805	642	0.4303	0.3733	U 5 40:-10 ⁻³	0	0 150050	1 0120	0 1 0 0 1	1.013102	0.162405	-0.89633	-0.89633	-0.89633	1.42175	1.274352
3/	1.3	-	0.103612	684	0.4052	0.3442	540x10	1542.857	0.159859	1.0128	0.16054	1.012805	0.160541	-1.01748	-1.03051	-0.86997	1.35423	1.1/8141
38	1.3	-	0.103612	684	0.4052	0.3442	270x10	//1.428	0.079929	1.0032	0.08001	1.012805	0.160541	-1.01748	-1.02074	-0.94072	1.35423	1.273952
39	1.3	-	0.103612	084	0.4052	0.3442	U	U 1542.057	0.150202	1 01257	0.15000	1.012605	0.100541	-1.01/48	-1.01/48	-1.01/48	1.35423	1.37/900
40	1.4	-	0.102662	121	0.3657	0.3017	270×10 ⁻³	1542.85/	0.158392	1.01257	0.15906	1.01257	0.159055	-1.1/932	-1.19414	-1.03509	1.23354	1.2/682
41	1.4	-	0.102662	121	0.3057	0.3017	270X10	//1.428	0.019190	1.00314	0.07928	1.01257	0.159055	-1.1/932	-1.18302	-1.103/4	1.23354	1.301505
42	1.4	-	0.102002	72/	0.3057	0.3017	U E 40::10 ⁻³	1542 057	0 157122	1 01 227	0 15 777	1.012257	0.159055	-1.1/932	-1.1/932	-1.1/932	1.23354	1.454/34
43	1.5	-	0.101839	770	0.3038	0.2359	270v10 ⁻³	1042.85/	0.15/122	1.01237	0.15///	1.012369	0.15///	-1.49504	-1.51353	-1.355/0	1.03302	1.400532
44	1.5	-	0.101039	770	0.3038	0.2359	270X10	//1.428	0.078501	1.00309	0.07804	1.012309	0.15777	1.49504	-1.49905	1.42101	1.03302	1 544400
45	1.5	-	0.101838	//0	0.3038	0.2359	U	U	U	1	U	1.012369	0.15///	-1.49504	-1.49504	-1.49504	1.03302	1.544409

ცხრილი 6. ერთგანზომილებიან სისტემაში წნევის Pz(20) მაჩვენებლების საანგარიშო ალგორითმი,(ლამ. ტურბ. რეჟ.)

dp	Z	12
0.2	0.54	-0.01815
0.2	0.27	0.12166
0.2	0.00	0.26415
0.3	0.54	0.09131
0.3	0.27	0.23021
0.3	0.00	0.37228
0.4	0.54	0.20331
0.4	0.27	0.34002
0.4	0.00	0.48044
0.5	0.54	0.30640
0.5	0.27	0.44135
0.5	0.00	0.58047
0.6	0.54	0.41033
0.6	0.27	0.54247
0.6	0.00	0.67924
0.7	0.54	0.51716
0.7	0.27	0.64595
0.7	0.00	0.77986
0.8	0.54	0.63233
0.8	0.27	0.75782
0.8	0.00	0.88897

ცხრილი 7. 20 ºC-ზე კონცენტრაციული პოლარიზაციის (CP20) მაჩვენებლების საანგარიშო ალგორითმი (ლამ. რეჟ.),

Ν	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.87922503	1.412068	0.996964	1.4120683	0.9969638	-0.444899	-0.44355	0.96852	0.52610
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.43961223	1.098196	0.45391	1.4120683	0.9969638	-0.444899	-0.20194	0.89625	0.48684
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4120683	0.9969638	-0.444899	0.00000	1.00000	0.54320
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.296559972	1.044297	0.300926	1.0442971	0.3009261	-0.27037	-0.08136	0.96294	0.52220
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14827989	1.011014	0.148824	1.0442971	0.3009261	-0.27037	-0.04024	0.97078	0.52645
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0442971	0.3009261	-0.27037	0.00000	1.00000	0.54230
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234753634	1.027681	0.236916	1.0276814	0.2369158	-0.302805	-0.07174	0.95594	0.51640
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117376741	1.006897	0.117646	1.0276814	0.2369158	-0.302805	-0.03562	0.97127	0.52468
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0276814	0.2369158	-0.302805	0.00000	1.00000	0.54020
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208812616	1.021881	0.210333	1.0218807	0.2103334	-0.351309	-0.07389	0.94799	0.50670
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406241	1.005455	0.104596	1.0218807	0.2103334	-0.351309	-0.03675	0.96871	0.51778
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.0218807	0.2103334	-0.351309	0.00000	1.00000	0.53450
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188324	1.018914	0.195411	1.0189139	0.1954111	-0.397928	-0.07776	0.94115	0.49900
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094099	1.004717	0.097247	1.0189139	0.1954111	-0.397928	-0.03870	0.96602	0.51218
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.0189139	0.1954111	-0.397928	0.00000	1.00000	0.53020
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.017112	0.185787	1.0171119	0.1857867	-0.44984	-0.08357	0.93354	0.48740
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.004269	0.092498	1.0171119	0.1857867	-0.44984	-0.04161	0.96266	0.50260
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.0171119	0.1857867	-0.44984	0.00000	1.00000	0.52210
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178097964	1.015901	0.179041	1.0159014	0.179041	-0.507549	-0.09087	0.92503	0.47380
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089048924	1.003967	0.089167	1.0159014	0.179041	-0.507549	-0.04526	0.95871	0.49105
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.0159014	0.179041	-0.507549	0.00000	1.00000	0.51220
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.173854	1.0150002	0.1738544	-0.572472	-0.09953	0.91547	0.46030
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495092	1.003743	0.086603	1.0150002	0.1738544	-0.572472	-0.04958	0.95417	0.47975
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.0150002	0.1738544	-0.572472	0.00000	1.00000	0.50280
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.01435	0.170016	1.0143497	0.1700155	-0.632412	-0.10752	0.90683	0.44480
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603413	1.003581	0.084704	1.0143497	0.1700155	-0.632412	-0.05357	0.95001	0.46598
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143497	0.1700155	-0.632412	0.00000	1.00000	0.49050
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195281	1.013842	0.166961	1.0138423	0.1669614	-0.708196	-0.11824	0.89560	0.42550
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083097587	1.003455	0.083193	1.0138423	0.1669614	-0.708196	-0.05892	0.94454	0.44875
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138423	0.1669614	-0.708196	0.00000	1.00000	0.47510
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.013435	0.164473	1.0134354	0.1644726	-0.795339	-0.13081	0.88262	0.40230
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.081869933	1.003353	0.081961	1.0134354	0.1644726	-0.795339	-0.06519	0.93817	0.42762
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134354	0.1644726	-0.795339	0.00000	1.00000	0.45580
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699253	1.013102	0.162405	1.0131018	0.1624048	-0.896325	-0.14557	0.86753	0.37330
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.080849574	1.00327	0.080938	1.0131018	0.1624048	-0.896325	-0.07255	0.93072	0.40049
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131018	0.1624048	-0.896325	0.00000	1.00000	0.43030
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859096	1.012805	0.160541	1.0128047	0.1605408	-1.017483	-0.16335	0.84946	0.34420
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929496	1.003196	0.080015	1.0128047	0.1605408	-1.017483	-0.08141	0.92178	0.37351
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128047	0.1605408	-1.017483	0.00000	1.00000	0.40520
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.15839211	1.01257	0.159055	1.0125703	0.1590552	-1.179321	-0.18758	0.82499	0.30170
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196004	1.003138	0.079279	1.0125703	0.1590552	-1.179321	-0.09350	0.90964	0.33266
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0125703	0.1590552	-1.179321	0.00000	1.00000	0.36570
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122288	1.012369	0.15777	1.0123691	0.1577696	-1.495037	-0.23587	0.77650	0.23590
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	771.428	0.078561093	1.003088	0.078642	1.0123691	0.1577696	-1.495037	-0.11757	0.88551	0.26902
45	1.5	-	0.101839	770	0.3038	0.2359	0	0	0	1	0	1.0123691	0.1577696	-1.495037	0.00000	1.00000	0.30380

v	D	d ₁	d ₂	Rez	Rey	Sc	17=b	18=X	19=CP	20
1.0105E-06	3.84E-11	0.0047215	0.091525	1126.0321	#NUM!	26315.104	#NUM!	#NUM!	#NUM!	-2054.5744
1.0105E-06	3.84E-11	0.0047215	0.091525	1050.1228	0.98049246	26315.104	0.0000251722	0.4264358017	1.5317882	193.21756
1.0105E-06	3.84E-11	0.0047215	0.091525	1158.919	5.85058667	26315.104	0.0000283878	4.8513677140	127.91522	2478.9528
1.0105E-06	3.84E-11	0.0047215	0.091525	1118.5167	#NUM!	26315.104	#NUM!	#NUM!	#NUM!	-34.859715
1.0105E-06	3.84E-11	0.0047215	0.091525	1126.7099	1.11995011	26315.104	0.0000270167	0.4804506065	1.6168028	233.64307
1.0105E-06	3.84E-11	0.0047215	0.091525	1157.1907	1.92704681	26315.104	0.0000278465	1.0120787584	2.7513144	507.29202
1.0105E-06	3.84E-11	0.0047215	0.091525	1107.3296	0.66048657	26315.104	0.0000264959	0.2303994947	1.2591029	109.88336
1.0105E-06	3.84E-11	0.0047215	0.091525	1123.2993	1.26177136	26315.104	0.0000269534	0.5710068871	1.7700484	277.03024
1.0105E-06	3.84E-11	0.0047215	0.091525	1153.157	1.76646447	26315.104	0.0000277299	0.8975442990	2.4535705	447.99802
1.0105E-06	3.84E-11	0.0047215	0.091525	1088.592	0.98176487	26315.104	0.0000260899	0.4121988263	1.5101347	193.57587
1.0105E-06	3.84E-11	0.0047215	0.091525	1109.9836	1.40719326	26315.104	0.0000266543	0.6747811368	1.9636032	323.74496
1.0105E-06	3.84E-11	0.0047215	0.091525	1142.2002	1.79246054	26315.104	0.0000274718	0.9250809317	2.5220724	457.44612
1.0105E-06	3.84E-11	0.0047215	0.091525	1073.6922	1.18183	26315.104	0.0000257600	0.5441278926	1.723105	252.30107
1.0105E-06	3.84E-11	0.0047215	0.091525	1099.1896	1.52582663	26315.104	0.0000264120	0.7644443538	2.1478006	363.42881
1.0105E-06	3.84E-11	0.0047215	0.091525	1133.9269	1.84842478	26315.104	0.0000272816	0.9733556585	2.6468114	477.98524
1.0105E-06	3.84E-11	0.0047215	0.091525	1051.2022	1.3520878	26315.104	0.0000252453	0.6729248792	1.9599616	305.78694
1.0105E-06	3.84E-11	0.0047215	0.091525	1080.6698	1.64389072	26315.104	0.0000259853	0.8642886125	2.3733171	404.25836
1.0105E-06	3.84E-11	0.0047215	0.091525	1118.324	1.92409179	26315.104	0.0000269191	1.0446540644	2.8424151	506.1811
1.0105E-06	3.84E-11	0.0047215	0.091525	1024.7664	1.51044316	26315.104	0.0000246349	0.8078099116	2.2429903	358.2057
1.0105E-06	3.84E-11	0.0047215	0.091525	1058.288	1.76483718	26315.104	0.0000254669	0.9760144339	2.653858	447.40856
1.0105E-06	3.84E-11	0.0047215	0.091525	1099.2208	2.013623	26315.104	0.0000264749	1.1334880054	3.106473	540.16147
1.0105E-06	3.84E-11	0.0047215	0.091525	998.44969	1.66930447	26315.104	0.0000240274	0.9554255431	2.5997767	413.2159
1.0105E-06	3.84E-11	0.0047215	0.091525	1036.3496	1.89481901	26315.104	0.0000249602	1.1022356338	3.0108898	495.21572
1.0105E-06	3.84E-11	0.0047215	0.091525	1081.0482	2.11882192	26315.104	0.0000260549	1.2386745647	3.4510363	580.92265
1.0105E-06	3.84E-11	0.0047215	0.091525	968.13876	1.78991917	26315.104	0.0000233199	1.0875803469	2.9670861	456.51987
1.0105E-06	3.84E-11	0.0047215	0.091525	1009.5341	1.99366971	26315.104	0.0000243332	1.2158330248	3.3731028	532.53125
1.0105E-06	3.84E-11	0.0047215	0.091525	1057.2177	2.19844035	26315.104	0.0000254966	1.3342880076	3.7972913	612.35653
1.0105E-06	3.84E-11	0.0047215	0.091525	930.24837	1.92789612	26315.104	0.0000224337	1.2570664172	3.5150945	507.61146
1.0105E-06	3.84E-11	0.0047215	0.091525	975.87259	2.11135776	26315.104	0.0000235453	1.3638053856	3.9110481	578.00133
1.0105E-06	3.84E-11	0.0047215	0.091525	1027.2966	2.29807527	26315.104	0.0000247956	1.4616927893	4.3132548	652.38464
1.0105E-06	3.84E-11	0.0047215	0.091525	884.47251	2.06151662	26315.104	0.0000213589	1.4529689198	4.2757902	558.60836
1.0105E-06	3.84E-11	0.0047215	0.091525	934.41107	2.2262942	26315.104	0.0000225710	1.5345894083	4.6394202	623.47005
1.0105E-06	3.84E-11	0.0047215	0.091525	989.66041	2.39613429	26315.104	0.0000239104	1.6090436023	4.9980288	692.51291
1.0105E-06	3.84E-11	0.0047215	0.091525	826.87812	2.18067125	26315.104	0.0000200003	1.6813545674	5.3728289	605.29818
1.0105E-06	3.84E-11	0.0047215	0.091525	880.89101	2.32731792	26315.104	0.0000213073	1.7319965395	5.6519269	664.27617
1.0105E-06	3.84E-11	0.0047215	0.091525	939.68765	2.48048119	26315.104	0.0000227293	1.7784192955	5.9204905	727.5986
1.0105E-06	3.84E-11	0.0047215	0.091525	768.63311	2.31053519	26315.104	0.0000186277	1.9607750175	7.1048313	657.44359
1.0105E-06	3.84E-11	0.0047215	0.091525	827.28931	2.44051616	26315.104	0.0000200433	1.9704855098	7.1741588	710.90956
1.0105E-06	3.84E-11	0.0047215	0.091525	890.20863	2.57826958	26315.104	0.0000215616	1.9812000015	7.2514395	768.91968
1.0105E-06	3.84E-11	0.0047215	0.091525	682.66414	2.41301478	26315.104	0.0000165902	2.3423883784	10.406061	699.49296
1.0105E-06	3.84E-11	0.0047215	0.091525	745.39323	2.52396131	26315.104	0.0000181005	2.2893318679	9.8683421	745.88682
1.0105E-06	3.84E-11	0.0047215	0.091525	811.71164	2.64373363	26315.104	0.0000196976	2.2477657511	9.4665615	796.96128
1.0105E-06	3.84E-11	0.0047215	0.091525	547.07196	2.54554235	26315.104	0.0000133730	3.1365623593	23.02458	755.01446
1.0105E-06	3.84E-11	0.0047215	0.091525	615.73605	2.63069575	26315.104	0.0000150216	2.9267194955	18.666295	791.3525
1.0105E-06	3.84E-11	0.0047215	0.091525	686.9392	2.72589276	26315.104	0.0000167321	2.7644116420	15.8697	832.57711

dp	1	19
0.3	0.54	1.25910
0.3	0.27	1.77005
0.3	0.00	2.45357
0.4	0.54	1.51013
0.4	0.27	1.96360
0.4	0.00	2.52207
0.5	0.54	1.72310
0.5	0.27	2.14780
0.5	0.00	2.64681
0.6	0.54	1.95996
0.6	0.27	2.37332
0.6	0.00	2.84242
0.7	0.54	2.24299
0.7	0.27	2.65386
0.7	0.00	3.10647
0.8	0.54	2.59978
0.8	0.27	3.01089
0.8	0.00	3.45104
0.9	0.54	2.96709
0.9	0.27	3.37310
0.9	0.00	3.79729

ნახაზი 9. 20 ℃-ზე კონცენტრაციული პოლარიზაციის (CP20) მაჩვენებლების გრაფიკული გამოსახულება (ლამ. რეჟ.),

ცხრილი 8. 20 º C-ზე კონცენტრაციული პოლარიზაციის (CP20) მაჩვენებლების საანგარიშო ალგორითმი (ტურბ. რეჟ.),

Ν	dp	t, ⁰C	ζ x 10 ⁻³	J	V ₀	V ₁	1	2	3	4	5	6	7	8	9	10	11
1	0.1	20	0.569868	171	0.5432	0.5261	540x10 ⁻³	1542.857	0.87922503	1.412068	0.996964	1.4120683	0.9969638	-0.444899	-0.44355	0.96852	0.52610
2	0.1	-	0.569868	171	0.5432	0.5261	270x10 ⁻³	771.428	0.43961223	1.098196	0.45391	1.4120683	0.9969638	-0.444899	-0.20194	0.89625	0.48684
3	0.1	-	0.569868	171	0.5432	0.5261	0	0	0	1	0	1.4120683	0.9969638	-0.444899	0.00000	1.00000	0.54320
4	0.2	-	0.192215	214	0.5423	0.5222	540x10 ⁻³	1542.857	0.296559972	1.044297	0.300926	1.0442971	0.3009261	-0.27037	-0.08136	0.96294	0.52220
5	0.2	-	0.192215	214	0.5423	0.5222	270x10 ⁻³	771.428	0.14827989	1.011014	0.148824	1.0442971	0.3009261	-0.27037	-0.04024	0.97078	0.52645
6	0.2	-	0.192215	214	0.5423	0.5222	0	0	0	1	0	1.0442971	0.3009261	-0.27037	0.00000	1.00000	0.54230
7	0.3	-	0.152155	256	0.5402	0.5164	540x10 ⁻³	1542.857	0.234753634	1.027681	0.236916	1.0276814	0.2369158	-0.302805	-0.07174	0.95594	0.51640
8	0.3	-	0.152155	256	0.5402	0.5164	270x10 ⁻³	771.428	0.117376741	1.006897	0.117646	1.0276814	0.2369158	-0.302805	-0.03562	0.97127	0.52468
9	0.3	-	0.152155	256	0.5402	0.5164	0	0	0	1	0	1.0276814	0.2369158	-0.302805	0.00000	1.00000	0.54020
10	0.4	-	0.135342	299	0.5345	0.5067	540x10 ⁻³	1542.857	0.208812616	1.021881	0.210333	1.0218807	0.2103334	-0.351309	-0.07389	0.94799	0.50670
11	0.4	-	0.135342	299	0.5345	0.5067	270x10 ⁻³	771.428	0.104406241	1.005455	0.104596	1.0218807	0.2103334	-0.351309	-0.03675	0.96871	0.51778
12	0.4	-	0.135342	299	0.5345	0.5067	0	0	0	1	0	1.0218807	0.2103334	-0.351309	0.00000	1.00000	0.53450
13	0.5	-	0.125863	342	0.5302	0.499	540x10 ⁻³	1542.857	0.194188324	1.018914	0.195411	1.0189139	0.1954111	-0.397928	-0.07776	0.94115	0.49900
14	0.5	-	0.125863	342	0.5302	0.499	270x10 ⁻³	771.428	0.097094099	1.004717	0.097247	1.0189139	0.1954111	-0.397928	-0.03870	0.96602	0.51218
15	0.5	-	0.125863	342	0.5302	0.499	0	0	0	1	0	1.0189139	0.1954111	-0.397928	0.00000	1.00000	0.53020
16	0.6	-	0.119735	385	0.5221	0.4874	540x10 ⁻³	1542.857	0.184734	1.017112	0.185787	1.0171119	0.1857867	-0.44984	-0.08357	0.93354	0.48740
17	0.6	-	0.119735	385	0.5221	0.4874	270x10 ⁻³	771.428	0.092367	1.004269	0.092498	1.0171119	0.1857867	-0.44984	-0.04161	0.96266	0.50260
18	0.6	-	0.119735	385	0.5221	0.4874	0	0	0	1	0	1.0171119	0.1857867	-0.44984	0.00000	1.00000	0.52210
19	0.7	-	0.115434	428	0.5122	0.4738	540x10 ⁻³	1542.857	0.178097964	1.015901	0.179041	1.0159014	0.179041	-0.507549	-0.09087	0.92503	0.47380
20	0.7	-	0.115434	428	0.5122	0.4738	270x10 ⁻³	771.428	0.089048924	1.003967	0.089167	1.0159014	0.179041	-0.507549	-0.04526	0.95871	0.49105
21	0.7	-	0.115434	428	0.5122	0.4738	0	0	0	1	0	1.0159014	0.179041	-0.507549	0.00000	1.00000	0.51220
22	0.8	-	0.112123	470	0.5028	0.4603	540x10 ⁻³	1542.857	0.172990	1.015	0.173854	1.0150002	0.1738544	-0.572472	-0.09953	0.91547	0.46030
23	0.8	-	0.112123	470	0.5028	0.4603	270x10 ⁻³	771.428	0.086495092	1.003743	0.086603	1.0150002	0.1738544	-0.572472	-0.04958	0.95417	0.47975
24	0.8	-	0.112123	470	0.5028	0.4603	0	0	0	1	0	1.0150002	0.1738544	-0.572472	0.00000	1.00000	0.50280
25	0.9	-	0.109671	513	0.4905	0.4448	540x10 ⁻³	1542.857	0.169207	1.01435	0.170016	1.0143497	0.1700155	-0.632412	-0.10752	0.90683	0.44480
26	0.9	-	0.109671	513	0.4905	0.4448	270x10 ⁻³	771.428	0.084603413	1.003581	0.084704	1.0143497	0.1700155	-0.632412	-0.05357	0.95001	0.46598
27	0.9	-	0.109671	513	0.4905	0.4448	0	0	0	1	0	1.0143497	0.1700155	-0.632412	0.00000	1.00000	0.49050
28	1	-	0.107719	556	0.4751	0.4255	540x10 ⁻³	1542.857	0.166195281	1.013842	0.166961	1.0138423	0.1669614	-0.708196	-0.11824	0.89560	0.42550
29	1	-	0.107719	556	0.4751	0.4255	270x10 ⁻³	771.428	0.083097587	1.003455	0.083193	1.0138423	0.1669614	-0.708196	-0.05892	0.94454	0.44875
30	1	-	0.107719	556	0.4751	0.4255	0	0	0	1	0	1.0138423	0.1669614	-0.708196	0.00000	1.00000	0.47510
31	1.1	-	0.106128	599	0.4558	0.4023	540x10 ⁻³	1542.857	0.163740	1.013435	0.164473	1.0134354	0.1644726	-0.795339	-0.13081	0.88262	0.40230
32	1.1	-	0.106128	599	0.4558	0.4023	270x10 ⁻³	771.428	0.081869933	1.003353	0.081961	1.0134354	0.1644726	-0.795339	-0.06519	0.93817	0.42762
33	1.1	-	0.106128	599	0.4558	0.4023	0	0	0	1	0	1.0134354	0.1644726	-0.795339	0.00000	1.00000	0.45580
34	1.2	-	0.104805	642	0.4303	0.3733	540x10 ⁻³	1542.857	0.161699253	1.013102	0.162405	1.0131018	0.1624048	-0.896325	-0.14557	0.86753	0.37330
35	1.2	-	0.104805	642	0.4303	0.3733	270x10 ⁻³	771.428	0.080849574	1.00327	0.080938	1.0131018	0.1624048	-0.896325	-0.07255	0.93072	0.40049
36	1.2	-	0.104805	642	0.4303	0.3733	0	0	0	1	0	1.0131018	0.1624048	-0.896325	0.00000	1.00000	0.43030
37	1.3	-	0.103612	684	0.4052	0.3442	540x10 ⁻³	1542.857	0.159859096	1.012805	0.160541	1.0128047	0.1605408	-1.017483	-0.16335	0.84946	0.34420
38	1.3	-	0.103612	684	0.4052	0.3442	270x10 ⁻³	771.428	0.079929496	1.003196	0.080015	1.0128047	0.1605408	-1.017483	-0.08141	0.92178	0.37351
39	1.3	-	0.103612	684	0.4052	0.3442	0	0	0	1	0	1.0128047	0.1605408	-1.017483	0.00000	1.00000	0.40520
40	1.4	-	0.102662	727	0.3657	0.3017	540x10 ⁻³	1542.857	0.15839211	1.01257	0.159055	1.0125703	0.1590552	-1.179321	-0.18758	0.82499	0.30170
41	1.4	-	0.102662	727	0.3657	0.3017	270x10 ⁻³	771.428	0.079196004	1.003138	0.079279	1.0125703	0.1590552	-1.179321	-0.09350	0.90964	0.33266
42	1.4	-	0.102662	727	0.3657	0.3017	0	0	0	1	0	1.0125703	0.1590552	-1.179321	0.00000	1.00000	0.36570
43	1.5	-	0.101839	770	0.3038	0.2359	540x10 ⁻³	1542.857	0.157122288	1.012369	0.15777	1.0123691	0.1577696	-1.495037	-0.23587	0.77650	0.23590
44	1.5	-	0.101839	770	0.3038	0.2359	270x10 ⁻³	771.428	0.078561093	1.003088	0.078642	1.0123691	0.1577696	-1.495037	-0.11757	0.88551	0.26902
45	1.5	-	0.101839	770	0.3038	0.2359	0	0	0	1	0	1.0123691	0.1577696	-1.495037	0.00000	1.00000	0.30380

ν	D	d1	d ₂	Rez	Rey	Sc	17=b	18=X	19=CP	20
1.0105E-06	3.84E-11	0.0047215	0.091525	1944.8836	#NUM!	26315.104	#NUM!	#NUM!	#NUM!	-2054.5744
1.0105E-06	3.84E-11	0.0047215	0.091525	1803.954	0.980492461	26315.104	0.0000431523	0.2487540406	1.2824266	193.21756
1.0105E-06	3.84E-11	0.0047215	0.091525	2006.1728	5.850586672	26315.104	0.0000485962	2.8339570971	17.012649	2478.9528
1.0105E-06	3.84E-11	0.0047215	0.091525	1930.8971	#NUM!	26315.104	#NUM!	#NUM!	#NUM!	-34.859715
1.0105E-06	3.84E-11	0.0047215	0.091525	1946.1453	1.119950109	26315.104	0.0000465616	0.2787742929	1.321509	233.64307
1.0105E-06	3.84E-11	0.0047215	0.091525	2002.9485	1.92704681	26315.104	0.0000480193	0.5869077213	1.7984186	507.29202
1.0105E-06	3.84E-11	0.0047215	0.091525	1910.0908	0.660486569	26315.104	0.0000456431	0.1337471909	1.1431038	109.88336
1.0105E-06	3.84E-11	0.0047215	0.091525	1939.7968	1.261771363	26315.104	0.0000464282	0.3314916233	1.3930445	277.03024
1.0105E-06	3.84E-11	0.0047215	0.091525	1995.4245	1.766464471	26315.104	0.0000478194	0.5204749189	1.6828267	447.99802
1.0105E-06	3.84E-11	0.0047215	0.091525	1875.2784	0.981764872	26315.104	0.0000448537	0.2397622072	1.2709469	193.57587
1.0105E-06	3.84E-11	0.0047215	0.091525	1915.0254	1.407193262	26315.104	0.0000458559	0.3922248357	1.4802705	323.74496
1.0105E-06	3.84E-11	0.0047215	0.091525	1974.9979	1.792460536	26315.104	0.0000473355	0.5368843920	1.7106688	457.44612
1.0105E-06	3.84E-11	0.0047215	0.091525	1847.6295	1.181830001	26315.104	0.0000442197	0.3169792629	1.3729741	252.30107
1.0105E-06	3.84E-11	0.0047215	0.091525	1894.9619	1.525826628	26315.104	0.0000453925	0.4447980029	1.560175	363.42881
1.0105E-06	3.84E-11	0.0047215	0.091525	1959.5841	1.848424779	26315.104	0.0000469750	0.5652956415	1.759968	477.98524
1.0105E-06	3.84E-11	0.0047215	0.091525	1805.9525	1.352087802	26315.104	0.0000432473	0.3928141920	1.4811432	305.78694
1.0105E-06	3.84E-11	0.0047215	0.091525	1860.5738	1.643890723	26315.104	0.0000445873	0.5037036320	1.6548388	404.25836
1.0105E-06	3.84E-11	0.0047215	0.091525	1930.5384	1.924091789	26315.104	0.0000462918	0.6074762127	1.8357924	506.1811
1.0105E-06	3.84E-11	0.0047215	0.091525	1757.0518	1.510443161	26315.104	0.0000421011	0.4726787724	1.604286	358.2057
1.0105E-06	3.84E-11	0.0047215	0.091525	1819.0759	1.764837177	26315.104	0.0000436129	0.5699232582	1.7681314	447.40856
1.0105E-06	3.84E-11	0.0047215	0.091525	1895.0198	2.013623002	26315.104	0.0000454560	0.6601756625	1.9351322	540.16147
1.0105E-06	3.84E-11	0.0047215	0.091525	1708.469	1.66930447	26315.104	0.0000409626	0.5604242520	1.7514154	413.2159
1.0105E-06	3.84E-11	0.0047215	0.091525	1778.4664	1.894819014	26315.104	0.0000426609	0.6448992615	1.905795	495.21572
1.0105E-06	3.84E-11	0.0047215	0.091525	1861.276	2.118821917	26315.104	0.0000446646	0.7225740526	2.0597282	580.92265
1.0105E-06	3.84E-11	0.0047215	0.091525	1652.636	1.789919174	26315.104	0.0000396463	0.6397125694	1.8959359	456.51987
1.0105E-06	3.84E-11	0.0047215	0.091525	1728.9197	1.993669707	26315.104	0.0000414917	0.7130353472	2.0401745	532.53125
1.0105E-06	3.84E-11	0.0047215	0.091525	1817.0932	2.198440354	26315.104	0.0000436209	0.7798967381	2.181247	612.35653
1.0105E-06	3.84E-11	0.0047215	0.091525	1583.0329	1.927896124	26315.104	0.0000380037	0.7420497510	2.1002361	507.61146
1.0105E-06	3.84E-11	0.0047215	0.091525	1666.869	2.111357758	26315.104	0.0000400267	0.8022438544	2.2305403	578.00133
1.0105E-06	3.84E-11	0.0047215	0.091525	1761.728	2.298075269	26315.104	0.0000423131	0.8565581227	2.355041	652.38464
1.0105E-06	3.84E-11	0.0047215	0.091525	1499.2391	2.061516616	26315.104	0.0000360221	0.8615209213	2.3667576	558.60836
1.0105E-06	3.84E-11	0.0047215	0.091525	1590.669	2.226294203	26315.104	0.0000382239	0.9061675665	2.4748198	623.47005
1.0105E-06	3.84E-11	0.0047215	0.091525	1692.2653	2.396134287	26315.104	0.0000406688	0.9460073972	2.5754065	692.51291
1.0105E-06	3.84E-11	0.0047215	0.091525	1394.2916	2.180671252	26315.104	0.0000335341	1.0027899940	2.7258764	605.29818
1.0105E-06	3.84E-11	0.0047215	0.091525	1492.6971	2.327317916	26315.104	0.0000358999	1.0279746967	2.7953986	664.27617
1.0105E-06	3.84E-11	0.0047215	0.091525	1600.3522	2.480481195	26315.104	0.0000384872	1.0502745300	2.8584357	727.5986
1.0105E-06	3.84E-11	0.0047215	0.091525	1288.7358	2.310535189	26315.104	0.0000310330	1.1769620441	3.2445026	657.44359
1.0105E-06	3.84E-11	0.0047215	0.091525	1395.0389	2.44051616	26315.104	0.0000335851	1.1759687056	3.2412813	710.90956
1.0105E-06	3.84E-11	0.0047215	0.091525	1509.7211	2.578269584	26315.104	0.0000363380	1.1755679855	3.2399827	768.91968
1.0105E-06	3.84E-11	0.0047215	0.091525	1134.0845	2.413014784	26315.104	0.0000273573	1.4204855882	4.1391299	699.49296
1.0105E-06	3.84E-11	0.0047215	0.091525	1246.7897	2.523961312	26315.104	0.0000300597	1.3785287687	3.9690579	745.88682
1.0105E-06	3.84E-11	0.0047215	0.091525	1366.7484	2.643733628	26315.104	0.0000329362	1.3442854710	3.835445	796.96128
1.0105E-06	3.84E-11	0.0047215	0.091525	893.31262	2.545542351	26315.104	0.0000216314	1.9390886667	6.9524121	755.01446
1.0105E-06	3.84E-11	0.0047215	0.091525	1014.723	2.630695752	26315.104	0.0000245381	1.7916626502	5.9994191	791.3525
1.0105E-06	3.84E-11	0.0047215	0.091525	1141.7408	2.725892762	26315.104	0.0000275798	1.6771050247	5.3500453	832.57711

19	2.50000	
1.14310		
1.39304		
1.68283	2.00000	
1.27095		
1.48027		
1.71067	1 50000	
1.37297	1.30000	
1.56018		
1.75997		
1.48114	1.00000	
1.65484		
1.83579		
1.60429		
1.76813	0.50000	
1.93513		
1.75142		
1.90580	0.00000	
2.05973		0
1.89594	0.00 0.10 0.20 0.50 0.40 0.50 0.00	U
2.04017	0.3 0.4 0.5 0.6 0.7 0.8 0.9	
2.18125		

ნახაზი 10. 20 ºC-ზე კონცენტრაციული პოლარიზაციის (CP20) მაჩვენებლების გრაფიკული გამოსახულება (ტურბ. რეჟ.)

dp

0.3

0.3

0.3

0.4

0.4 0.4

0.5 0.5

0.5 0.6

0.6

0.7

0.7

0.8

0.8 0.8

0.9

0.9 0.9 1

0.54

0.27

0.00

0.54 0.27

0.00

0.27

0.54 0.27

0.00 0.54

0.27

0.00

0.27

0.00 0.54

0.27 0.00

2.2 ექსპერიმენტული კვლევა

2.2.1 ბორჯომის მინერალური წყლის დებარირება-

დეფთორირების ბარომემბრანული პროცესების კვლევა

ბორჯომის მინერალური წყლის დეფთორირება-დებარირების პროცესის ექსპერიმენტული კვლევა დაგეგმილია ტანგენციალური ფილტრაციის მემბრანული ტექნოლოგიის ბაზაზე, რომელიც ეყრდნობა ზედაპირულ საცრულ ეფექტს, რომლის დროსაც ნაწილაკების შეკავება ხდება მხოლოდ მემბრანების ზედაპირზე. ამ დროს დასამუშავებელი სითხე მიეწოდება მემბრანისადმი არა პერპენდიკულარულად არამედ მხებად– ტანგენციალური მიმართულებით.

ექსპერიმენტული კვლევები ტარდებოდა მემბრანული ტექნოლოგიების საინჟინრო ინსტიტუტის მემბრანული პროცესების კვლევისა და ნანოტექნოლოგიების დამუშავების განყოფილებაში.

ექსპერიმენტალური კვლევები მოიცავს მექანიკური (გრანულომეტრიული), მიკრო-, ულტრა- და ნანოფილტრაციული პროცესების კვლევას. ნახაზი 11-ზე მოყვანილია ბორჯომის მინერალური წყლის დებარირება-დეფთორირების მემბრანული დანადგარის პრინციპული სქემა.

ნახაზი 11. ბორჯომის მინერალური წყლის დებარირება-დეფთორირების მემბრანული დანადგარის პრინციპული სქემა.

1 – საწყისი სითხის ავზი; 2,8,12 – ვენტილები; 3 – წინასწარი ფილტრი; 4,15,16,25 – სამპოზიციანი ვენტილები; 5, 9, 13 – ტუმბოები;

6 – მიკროფილტრაციული მემბრანული აპარატი; 7,11 – შუალედური ავზები; 10 – ულტრაფილტრაციული მემბრანული აპარატი; 14 – ნანოფილტრაციული მემბრანული აპარატი; 18 – საწყისი სითხე; 19 – მიკროფილტრაციის კონცენტრატი; 20,21,22 ფილტრატები, 23 – სარეცხი სითხის ავზი; 24 – სარეცხი სითხე.

2.2.2.2 ნანოფილტრაციული ექსპერიმენტული მემბრანული დანადგარის აღწერა

ექსპერიმენტული დანადგარი მოცემულია ნახაზი 12-ზე და სურათი 5-ზე ექსპერიმენტული დანადგარი შედგება საწყისი ავზიდან 1, ტუმბოსაგან 2, მემბრანული აპარატისაგან 3 თავისი ფილტრატის შემკრებით 4, უკუსარქვლით 5 და შტუცერით 6. დანადგარს გააჩნია ვენტილები 7, 8 და 9. დანადგარი აღჭურვილია მილგაყვანილობებით I, II, III და IV.

მემბრანული დანადგარი მუშაობს შემდეგნაირად: ბორჯომის მინერალური წყალი საწყისი ავზიდან 1 ტუმბოს 2 საშუალებით, მილგაყვანილობების I და II და შტუცერის 6 გავლით მიეწოდება მემბრანულ აპარატში 3. გაივლის რა მემბრანული აპარატის 3 ყველა მუშა საკანს თანმიმდევრობით ქვემოდან ზემოთ წყლის ნაწილი გადის მემბრანებში, იწმინდება ყველა არასასურველი მინარევისაგან, ნაწილობრივ ფთორისაგან და ფილტრატის ანუ პროდუქტის სახით შემკრების 4 და ვენტილის 8 გავლით მილგაყვანილობით IV გამოიყვანება მემბრანული აპარატიდან 3.

წყლის ის ნაწილი, რომელმაც ვერ მოასწრო მემბრანებში გავლა წყლიდან გამოყოფილ მინარევებთან და ფთორთან ერთად, უკუსარქვლის 5 და ვენტილის 9 გავლით მილგაყვანილობით III რეცირკულირდება და კონცენტრატის სახით ბრუნდება საწყის ავზში 1.

ამრიგად, წყლიდან გამოყოფილი (მებრანების მიერ შეკავებული) მინარევები ფთორთან ერთად გროვდება საწყის ავზში 1. ამიტომ, პერიოდულად საჭიროა ამ დაგროვილი კონცენტრატის გამოტვირთვა საწყისი ავზიდან 1 სპეციალური ვენტილის 7 საშუალებით.

ნახაზი 12. ნანოფილტრაციული ექსპერიმენტული დანადგარი პრინციპული სქემა

სურათი 5. ნანოფილტრაციული ექსპერიმენტული დანადგარის საერთო ხედი

2.2.3 პარაგრაფში აღწერილია მიკრო- , ულტრა- და ნანოფილტრაციული

ლაბორატორიული და პილოტური მემბრანული დანადგარები

2.2.4 ბორჯომის მინერალური წყლის ნაწილობრივი დეფთორირება -

დებარირების პროცესის კვლევის მეთოდიკა კალციუმისა და

ქლორის ზდკ-ს სტანდარტის დაცვით

სურათი 6-ზე ნაჩვენებია ბორჯომის მინერალური წყლის ბურღ.-ის ნიმუშები (ბურღი 1, ბურღი137თბ,ცივი, ბურღი 41, ბურღი 37, ბურღი 25, ბურღი 9, ბურღი ლიკანი, ბურღი ცენტრ. პარკი), რომლებზეც მიმდინარეობდა ექსპერიმენტალური კვლევები და გამოყენებული ქიმიური რეაქტივები(კალციუმის კარბონატი-CaCO₃, კალიუმის ნიტრატი-KNO₃, ბარიუმის ქლორიდი-BaCl₂.2H₂O, კალიუმის ქლორიდი-KCl, ნატრიუმის ქლორიდი-NaCl, ნატრიუმის აცეტატი-CH₃COONa, ნატრიუმის ციტრატი-NaC₆H₅O₇, ტრილონ ბ, კალციუმის ქლორიდი-CaCl₂, ექსიკატორში ნატრიუმის ფტორიდი-NaF ნატრიუმის ჰიდროქსიდი-NaOH, რომლითაც დამზადდა საკალიზისთვის.

სურათი 6. ბორჯომის წყლის ბურღ. ნიმუშები და ქიმიური რეაქტივები

ლაბორატორიული კვლევებისთვის გამოყენებული იყო შემდეგი ხელსაწყოები: 1.3დ პრინტერი ULTIMAKER 2, რომლის მუშაობის სიზუსტეა 0,02 მმ, სიმღვრივის მზომი TURB 555 IR, იონმეტრი И-160, ორი ანალიზური სასწორი, კონდუქტომეტრი.

2.2.5 ფთორის იონომეტრული განსაზღვრის მეთოდიკა

ბორჯომის მინერალურ წყალში ფთორის განვსაზღვრავთ იონმეტრული მეთოდით, რომელსაც ვახორციელებთ იონომეტრის И-160-ს საშუალებითა და ფთორის იონსელექტიური ელექტროდით.

ფთორის იონომეტრული განსაზღვრისთვის საჭიროა საკალიბრო ხსნარების დამზადება. ვამზადებთ NaF-ის 0.1 მოლურ მირითად სტანდარტულ ხსნარს. ამისათვის ვწონით 4.2 გ. NaF და ვხსნით ჯერ მცირე რაოდენობა გამოხდილ წყალში, ხოლო შემდეგ გადაგვაქვს ლიტრიან საზომ კ**ოლბა**ში და ვავსებთ ჭდემდე გამოხდილი წყლით. ასეთი ხსნარი შეიცავს 1900 მგ/ლ F^- იონს. სამუშაო სტანდარტულ ხსნარებს ვამზადებთ მირითადი სტანდარტული ხსნარის თანდათანობით ათჯერადი განზავებით. კერმოდ 0.1 მოლური ხსნარიდან ვიღებთ 10 მლ ხსნარს, გადაგვაქვს 100 მლ-იან საზომ კოლბაში და ვავსებთ 10^{-2} მოლურ ხსნარს, რომელშიც ფტორის იონის კონცენტრაციაა 190 მგ/ლ. შემდეგ 10^{-2} მოლური ხსნარიდან ვიღებთ 10 მლ იან საზომ კოლბაში და ვავსებთ გამოხდილი წყლით ჭდემდე. ასეთი ხსნარი 10⁻³ მოლურია, ხოლო მასში F^- - ის შემცველობა 19.0 მგ/ლ. შემაველობა 1.90 და 0.19 მგ/ლ -ია.

საკალიბრო გრაფიკის ასაგებად ვირჩვთ ორ წერტილს. კერძოდ 10⁻³მოლურ და 10⁻⁵ მოლურ სამუშაო სტანდარტულ ხსნარებს, ხოლო საკონტროლო წერტილად - 10⁻⁴ მოლურ ხსნარს.

თითოეული წერტილის საანალიზოდ 100 მილილიტრიან ქიმიურ ჭიქებში შეგვაქვს 50 მლ ალიქვოტი, ვუმატებთ 10 მლ ბუფერს და ენერგიული მორევის შემდეგ ვათავსებთ მასში ელექტროდებს. კერმოდ, დამხმარე ქლორვერცხლისწყლის ელექტროდს (რომელიც შევსებულია KCl-ის ნაჯერი ხსნარით), ფთორის იონოსელექტრიურ ელექტროდს (რომლის მემბრანაც წინასწარ 3-5 წუთის განმავლობში გამდინარე გამოხდილი წყლითაა გარეცხილი, ხოლო შემდეგ ჩაშვებულია გამოხდილ წყალში, მანამ, ვიდრე პოტენციალი არ გახდება-260 მვ.) და თერმოელექტროკომპენსატორს ტემპერატურული რეჟიმის დასამყარებლად (რათა ხსნარისა და ოთახის ტემპერატურა დიდად არ განსხვავდებოდეს ერთმანეთისგან). იონომეტრის II-160-ს საშუალებით ხელსაწყო საჭირო ღილაკებით გადაგვყავს დაკალიბრების რეჟიმში და ეკრანზე აისახება ფტორის კონცენტაციების შესაბამისი მნიშვნელობები, რომლებიც თანხვედრაშია სამუშაო სტანდარტული ხსნარის კონცენტაციებთან. კონრტოლის მიზნით ხელსაწყო გადაგვყავს გაზომვის რეჟიმში და ეკრანზე ჩნდება საკონტროლო ხსნარში არსებული ფთორის ცნობილი რაოდენობის მნიშვნელობა.

ანალიზისთვის საჭირო ბუფერული ხსნარი მზადდება შემდეგნაირად: 58.5 გ. NaCl, 15.0 გ. ყინულოვან ძმარმჟავას- CH_3COOH , 102.0 გ. ნატრიუმის აცეტატს CH_3COONa . 3 H_2O და 0.26 გ. ნატრიუმის ციტრატს ვხსნით მცირე რაოდენობა გამოხდილ წყალში, გადაგვაქვს ლიტრიან საზომ კოლბაში და ვავსებთ გამოხდილი წყლით ჭდემდე. ანალიზისთვის თითოეულ საანალიზო ხსნარს ვუმატებთ ბუფერული ხსნარის 10 მლ.

სურათი 7. ფთორის იონომეტრული განსაზღვრისათვის მომზადებული საკალიბრო და ბუფერული ხსნარები

იონომეტრის И-160 დავაკალიბრეთ ორ წერტილზე, ხოლო გავაკონტროლეთ მესამე წრტილით. იხილეთ შედეგები:

<i>F[~]</i> (მოლი/ლ. მგ/ლ)	P_{x}	C_x
10 ⁻⁵ მოლი - 0.19 მგ/ლ	-0.798	119
10 ⁻³ მოლი - 19.00 მგ/ლ	1.450	676
10 ⁻⁴ მოლი - 1.90მგ/ლ		
10 ⁻² მოლი - 190მგ/ლ		

2.2.6, 2.2.7 და 2.2.8 პარაგრაფებში აღწერილია შესაბამისად ბარიუმის, კალციუმისა და ქლორის იონომეტრული განსაზღვრის მეთოდიკა.

2.2.9 ბორჯომის მინერალური წყლის ნაწილობრივი დეფთორირება-

დებარირების ექსპერიმენტული კვლევა

ცხრილი 9. ლამინარული რეჟიმის პირობებში საწყისი და დამუშავებული ბორჯომის მინერალური წყლის ქიმიური კომპონენტების რაოდენობრივი მაჩვენებლები

ბურღილი	ტექნოლოგია	Ba, მგ/ლ	F , მგ/ლ	Ca, მგ/ლ	Cl, მგ/ლ
37	დაუმუშავებელი	3.27	5.26	51.7	386.0
37	K	1.60	3.82	28.2	348.0
37	S	1.05	4.11	38.5	359.0
41	დაუმუშავებელი	3.46	6.96	97.2	352.0
41	K	1.09	4.82	74.2	292.0
41	S	0.937	6.52	15.8	349.0
41	2S	1.26	-	-	334.0
25	დაუმუშავებელი	3.58	9.67	46.8	372.0
25	K	1.11	5.10	32.5	328.0
25	S	1.64	6.48	30.8	335.0
ლიკანი	დაუმუშავებელი	2.34	4.06	127.0	243.0
ლიკანი	K	0.738	2.26	56.8	206.0
ლიკანი	S	0.833	2.95	104	199.0
ცერნტ. პარკი	დაუმუშავებელი	3.11	5.76	97.9	323.0
ცერნტ. პარკი	K	0.875	3.91	71.8	289.0
ცერნტ. პარკი	S	1.16	4.69	51.6	291.0
დასაშვები დიაპაზონი		<1	<5	20 - 150	260 - 380

ცხრილი10.ტურბულენტური რეჟიმის პირობებში საწყისი და დამუშავებული
ბორჯომის მინერალური წყლის ქიმიური კომპონენტების
რაოდენობრივი მაჩვენებლები

ბურღილი	ტექნოლოგია	Ba, მგ/ლ	F , მჯ/ლ	Ca, მგ/ლ	Cl, მგ/ლ
37	დაუმუშავებელი	3.27	5.26	51.7	386.0
37	К	1.23	3.58	25.5	340.0
37	S	0.958	3.84	38.5	347.0
41	დაუმუშავებელი	3.46	6.96	97.2	352.0
41	К	0.854	4.28	69.5	273.0
41	S	0.614	5.84	12.0	318.0
41	2S	1.26	-	-	334.0
25	დაუმუშავებელი	3.58	9.67	46.8	372.0
25	К	0.973	4.57	29.2	305.0
25	S	1.23	5.77	24.2	328.0
ლიკანი	დაუმუშავებელი	2.34	4.06	127.0	243.0
ლიკანი	К	0.641	1.83	48.6	199.0
ლიკანი	S	0.780	2.72	97.6	194.0
ცერნტ. პარკი	დაუმუშავებელი	3.11	5.76	97.9	323.0
ცერნტ. პარკი	К	0.623	3.53	68.4	266.0
ცერნტ. პარკი	S	0.996	4.50	49.1	285.0
დასაშვები დიაპაზონი		<1	<5	20 - 150	260 - 380

ბორჯომის მინერალური წყლის დებარირება-დეფთორირების ბარომემბრანული პროცესის ექსპერიმენტული კვლევისას ევროკავშირის დირექტივის თანახმად მინერალურ წყალში ბარიუმი არ უნდა აღემატებოდეს 1 მგ/ლ, ხოლო ფთორი 5 მგ/ლ-ს. ასევე კალციუმის დასაშვები რაოდენობის დიაპაზონია 20-150 მგ/ლ, ხოლო ქლორის 260-380 მგ/ლ.

ბორჯომის მინერალური წყლის დებარირება-დეფთორირების ბარომემბრანული პროცესის ექსპერიმენტული კვლევისას მიღებული შედეგები მოცემულია ცხრილებში 17 და 18, სადაც (K) და (S) მემბრანებითა და ტექნოლოგიებით დამუშავებული სხვადასხვა ბურღილების წყლები შეესაბამება ევროკავშირის ზღვრულ დასაშვებ ნორმებს.

ცხრილებში 9 და 10 მოყვანილი შედეგები ცხადყოფს ტურბულენტული რეჟიმის უპირატესობას ლამინარულთან შედარებით, რაც გამოისახება ბარიუმისა და ფთორის რაოდენობის უფრო ეფექტურად შემცირებაში.

2.2.10 ფილტრატის რაოდენობის ექსპერიმენტული კვლევა

ლამინარული და ტურბულენტური რეჟიმის პირობებში

ცდების მიმდინარეობისას ხდება ფილტრატისა და კონცენტრატის რაოდენობის აზომვა შესაბამისი ტემპერატურისა და წნევის პირობებში დროის ერთიდაიმავე შუალედში.

ექსპერიმენტული კვლევების საფუძველზე შერჩეული ტუმბოსთვის დაზუსტდა წარმადობისა წნევის მაჩვენებლები ლამინარული და ტურბულენტური და რეჟიმებისთვის. დადგინდა მემბრანული დანადგარის საცირკულაციო ნაკადის სიდიდე წინასწარ განსაზღვრული ტემპერატურისა წნევის პირობებში. და მიღებული შედეგები მოცემულია ცხრილში 11.

dP ഷ	ل 2/100	J _T ge/bos
0,3	102	145
0,4	180	270
0,5	240	320
0,6	286	370
0,7	340	405
0,8	390	460

ცხრილი 11. ლამინარული და ტურბულენტური რეჟიმების პირობებში ფილტრატის რაოდენომრივი მნიშვნელობები

ჩატარებულმა ექსპერიმენტულმა კვლევებმა დაადასტურეს მათემატიკური გათვლების სისწორე.

ექსპერიმენტული კვლევების შედეგად დადგინდა:

- სადაწნეო საკანში სიჩქარის მაჩვენებლის ოპტიმიზაციის ხარჯზე გაიზარდა ფილტრატის რაოდენობა, რაც აისახა ცხრილში (11).
- იონმეტრული მეთოდით მიღებულ მონაცემებში ერთიდაიგივე ტექნოლოგიურ
 პირობებსა და სითხის დინების სხვადასხვა (ლამინ., ტურბ.) რეჟიმების დროს
 მნიშვნელოვნად იზრდება ფილტრაციის ხარისხი, რაც აისახა სურათებში (1-7).

დასკვნა

ჩატარებულ სამუშაოთა საფუძველზე მიღებულია შედეგები, რომელთა საფუძველზე გაკეთდა დასკვნები:

ბორჯომის ბუნებრივი მინერალური წყლის მოლეკულურ-იონური შედგენილობის რეგულაცია შესაძლებელია ბარომემბრანული პროცესების გამოყენებით, რაც დასტურდება იონმეტრიული და ტურბიდიმეტრიული კვლევის მეთოდებით, მინერალური წყლის მიზანმიმართული დეიონიზაციით გამოწვეული ქიმიური შედგენილობის ცვლილებით;

ბორჯომის ბუნებრივი მინერალური წყლის დამუშავებისთვის მიზანშეწონილია ბარომემბრანული პროცესების (მიკრო-, ულტრა-, ნანოფილტრაცია) ეტაპობრივი გამოყენება;

ბორჯომის ბუნებრივი მინერალური წყლის დამუშავება მოიცავს ოთხ ეტაპს, ესენია: 1.მექანიკური ფილტრაცია; 2.ულტრაფილტრაცია; 3.ნანოფილტრაცია; 4.ფინიშურისტერილური მიკროფილტრაცია.

ბორჯომის ბუნებრივი მინერალური წყლის დამუშავების პირველ ეტაპზე მიზანშეწონილია სითხის დამუშავება 50-200 მკმ. ზომის ნაწილაკების მოცილების მიზნით, რისთვისაც დამუშავდა და დამზადდა 50 მკმ.-დან 300 მკმ.-მდე ზომის ნაწილაკების შემაკავებელი კარტრიჯული ტიპის რევერსული ხელსაწყო;

ბორჯომის ბუნებრივი მინერალური წყლის დამუშავების მეორე ეტაპი გულისხმობს ულტრაფილტრაციული პროცესის გამოყენებით სითხის სტერილიზაციას (მიკრობიოლოგიური დამუშავება), რომლის პარალელურად ხდება გრანულომეტრიული დამუშავება 10-50 ნმ.-ის ზომის ნაწილაკების დიაპაზონში, რის შედეგადაც მინერალური წყლის საწყისი სიმღვრივე ფორმაზინის ერთეულის მიხედვით 1.09-6.33 FTU დაყვანილია 0.09-0.10 FTU-მდე.

დამუშავდა ბორჯომის ბუნებრივი მინერალური წყლის დებარირებადეფთორირების მემბრანული ნანოტექნოლოგია.

ბორჯომის ბუნებრივი მინერალური წყლის იონმეტრული მეთოდით ანალიზის შედეგად ბარიუმისა და ფთორის რაოდენობა ბურღილების მიხედვით მერყეობს 2.34-3.58 მგ/ლ-სა (დასაშვები 1მგ/ლ) და 4.04-9.67 მგ/ლ-ს (დასაშვები 5მგ/ლ) შორის.

ბორჯომის ბუნებრივი მინერალური წყლის ნანოფილტრაციული პროცესის მეშვეობით დამუშავების შედეგად ბურღილების მიხედვით ბარიუმი მერყეობს 0.738დან 1.11მგ/ლ-მდე, ხოლო ფთორი 2.26-დან 5.10 მგ/ლ-მდე, რაც დასახული ამოცანის შესრულებას სრულად აკმაყოფილებს;

ბორჯომის ბუნებრივი მინერალური წყლის სტერილიზაციისა და შეწონილი ნაწილაკებისგან გაწმენდის მიზნით გამოყენებულ იქნა მე-5 თაობის ბრტყელსაკნიანი მემემრანული აპარატი, რომელისთვისაც შემუშავდა მინერალური წყლის ულტრაფილტრაციული გაყოფის პროცესის მათემატიკური მოდელი.

ბორჯომის ბუნებრივი მინერალური წყლის დებარირება-დეფთორირების პროცესის ოპტიმიზაციისთვის დამუშავდა და შეიქმნა მე-5 თაობის ცხაურიანი ბრტყელსაკნიანი მემრანული აპარატი, რომლისთვისაც შემუშავდა მინერალური წყლის ულტრაფილტრაციული გაყოფის პროცესის მათემატიკური მოდელი;

ბორჯომის ბუნებრივი მინერალური წყლის იონმეტრული მეთოდით ანალიზის შედეგად კალციუმისა და ქლორის რაოდენობა ბურღილების მიხედვით მერყეობს 46.8-126.0 მგ/ლ-სა (დასაშვები დიაპაზონი 20-150 მგ/ლ) და 243.0-386.0 მგ/ლ-ს (დასაშვები დიაპაზონი 260.0-380.0 მგ/ლ) შორის.

ბორჯომის ბუნებრივი მინერალური წყლის ნანოფილტრაციული პროცესის მეშვეობით დამუშავების შედეგად ბურღილების მიხედვით კალციუმის რაოდენობა მერყეობს 32.5-დან 74.2მგ/ლ-მდე, ხოლო ქლორის 206-დან 372-მგ/ლ-მდე, რაც დასახული ამოცანის შესრულებას სრულად აკმაყოფილებს;

დამუშავდა ბორჯომის ბუნებრივი მინერალური წყლის ფილტრაციის მექანიკური-, ულტრა- და ნანოფილტრაციული სრულად ავტომატიზირებული მემბრანული დანადგარის ტექნოლოგიური სქემა.

დისერტაციის ძირითი შედეგები გამოქვეყნებულია შემდეგ

პუბლიკაციებში:

1.გ.ბიბილეიშვილი. მემბრანული ტექნოლოგიების ფუნდამენტური და გამოყენებითი კვლევების ინდუსტრია, "მეცნიერება და ტექნოლოგიები", №3(717) 2014, _{ბ3}. 66-71.

 გ.ბიბილეიშვილი, კ.დომიანიძე მემბრანული დაყოფის პროცესებისა და ნანოტექნოლოგიების განვითარების ტენდენციები, "მეცნიერება და ტექნოლოგიები", №3(717) 2014, გ. 72-75

 გ. ბიბილეიშვილი, ე.კაკაბამე, მემბრანების ფორის ზომების განმსაზღვრელი ხელსაწყო, "საქართველოს ქიმიური ჟურნალი" №2 2015, _{გ3}. 71-72.

4.გ.ბიბილეიშვილი, ნ.გოგესაშვილი, პოლიმერული მემბრანების მისაღები უნივერსალური ლაბორატორიული ტექნიკის შექმნა"საქართველოს ქიმიური ჟურნალი" №2 2015, გე. 76-77.

გ.ბიბილეიშვილი, ნ.გოგესაშვილი, აცეტატცელულოზური მემბრანების
 მაფორმირებელი ხსნარების სტრუქტურისა და თვისებების შესწავლა, "საქართველოს
 ქიმიური ჟურნალი" №2 2015, გ. 76-77.

6.გ.ბიბილეიშვილი, ლ.ყუფარაძე ჰიდროდინამიკური პროცესების ინტენსიფიკაციის მიზნით მორეაგირე წახნაგოვანი და პარაბოლოიდურ ზედაპირთა შედარებითი ანგარიში, "საქართველოს ქიმიური ჟურნალი" №2 2015, _{ბ.მ}. 82-83

7.G.Bibileishvili, G.Gogesashvili, "PREPARATION OF POLYMER MEMBRANES BY USING OF SOME AROMATIC POLYAMIDES, "4th International Caucasian Symposium on Polymers and Advanced Materials". Batumi, Georgia 1-4 July, 2015.

8.M.Kezherashvili, G.Bibileishvili," HIGH PERFORMANCE MATERIALS FOR MEMBRANE", "4th International Caucasian Symposium on Polymers and Advanced Materials". Batumi, Georgia 1-4 July, 2015.

Abstract

Scientific work focuses on the unique possibilities of Nano technologies and its application in high-tech fields of science, teqhnologies, engineering and social sphere.

The issues of practical application of nano-sided membrane processes are reviewed, as their usage for realization of a number of other priority trends of nanoindustry. Trends of membrane separation process development are given, ways of their implementation and practical significance of membrane teqnologies in various fields of human activity. The article represents unique possibilites of providing allternations with ther use in hightech science, technologies, engineering and the social fild. The issues of practical application of nano-sized membrane pricess and their usage for realization of a number of priority of nanoindustry have been considered. There were considered tendencies of membrane separation processes, the ways of their implementation and also, practical significace of membrane Nanotechnologies in highquality mineral water from natural surface and undergrround waters.

The goal of dissertation work's researches is the development of membrane nanotechnologies for partial reducing of content of Fluorine and Barium in Borjomi mineral water. Because, Borjomi mineral water contains Fluorine 10 mg/l and Barium 4.3 mg/l, where the maximal permissible concentration are: for Fluorine 2 - 5 mg/l, and for Barium 1 mg/l.

On the first stage of the project must be carried out detailed monitoring of Borjomi mineral water from different wells (well #1, well #25, well #37, well #38, well #41, well #54, well #59, well #143, well #144). Detailed monitoring means microbiological analysis researches of suspended particles in mineral water. Also chemical analysis of mineral water from each well: (Ca), (Mg), (Na), (K), (NH₄), (Fe), **(Ba)**, (As), (V), (Cr), (Se), (Hg), (Rb), (Cs), (Sr), (U), (RQ), (HCO₃), (CO₃), (SO₄), (Cl), (NO₃), **(F**), (Br), (I), and (NO₂).

The next stage implies theoretical and experimental reseraches for Borjomi mineral water microbiological cleaning (purification) and development of math model for this process. The next stage implies the Ultrafiltration and Nanofiltration processes' and corresponding math model's drafting and development for reducing of Fluorine and Barium content in Borjomi mineral water. In given dissertation work must be presented:

Membrane Nanotechnology and Nanosystem creation and development with the help of structurally new flat-parallel type membrane unit;

Creation and development of corresponding computed algorithm for conditional parameters calculating for receiving of optimal technological membrane process;

The determination of influence of hydrodynamic parameters on concentration polarization value in working chamber, and creation and development of algorithm of their ratio;

Theoretical optimization computation of geometrical and conditional parameters of given membrane unit.