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Introduction

The modern probability theory is an interesting and most important part of math-
ematics, which has great achievements and close connections both with classical
parts of mathematics { geometry, mathematical analysis, functional analysis), and
its various branches( theory of random processes, theory of ergodicity, theory of
dynamical system. mathematical statistics and so on). The development of these
branches of mathematics is mainly connected with the problems of statistical me-
chanics, statistical physics, statistical radio engineering and also with the problems
of complicated systems which consider the random and the chaotic influence.

At the origin of the probability theory were standing such famous mathemati-
cians as [.Bernoulli, P.Laplace, S.Poisson, A.Cauchy, G.Cantor, F.Borel, A.Lehesgue
and others. A very controversial problem connected with the relation between the
probability theorv and mathematics was entered in the list of unsolved mathemati-
cal problems raised by D.Gilbert in 1900. This problem has bheen solved by Russian
mathematician A.Kolmogorov in 1933 who gave us a strict axiomatic basis of the
probahility theory.

A Kolmogorov conception to the basis of the probability theory is applied in
the present book. Giving a strong svstem of axioms (according to A.Kolmogorov)
the general probability spaces and their cdmposite compdnents are described in the
present boolk.

The main purpose of the present book is to help students to acquire such skills
that are necessary to construct mathematical models (i.e., probability spaces) of
various (social, economical, biological, mechanical, physical, etc) processes and to
calenlate their numerical characteristics. In this sense the last chapters ( in particu-
lar, chapters 14-15) are of interest, where some applications of varions mathematical
models( Markov chains, Brownian motion, etc) are presented. The present book con-
sists of fifteen chapters. Each chapter is equipped with exercises (i.e. tests), the
solutions of which will help the student in deep comprehend and assimilation of
experience of the presented elements of the probability theory.



Chapter 1

Set-Theoretical Operations.
Kolmogorov Axioms

Let 2 be a non-empty set and let P(Q) be a class of all subsets of £2
( P(€2) is called a powerset of 1).

Definition 1.1  An union of the finite family (Ag)1<p<n of elements of P((2)
is denoted by the symbol LUP_;A4; and is defined by

U Ag = {2z e Ay \/ -z € A,},

where \/ denotes the logical symbol of disjunction.

Definition 1.2 An intersection of an infinite family (Ag)pey of elements of
P(1) is denoted by the symbol U=y Ap and is defined by

Uren A = {zlz € A \z e A\ .

Definition 1.3 An intersection of a finite family (Ajp)1<p<, of elements of P((2)
is denoted by the symbol M_; A and is defined by

Mo Ag = {zlz e Ay \ - Nz € A},
where A denotes the logical symbol of conjunction.

Definition 1.4 An intersection of an infinite family (A )pepy  of elements of
P(€}) is denoted by the symbol Mp=y Ap and is defined by

MeenAp = {2z e Ay Nee Ay \ -}

Definition 1.5 Let 4. B  P(Q). A difference of sets A and B is defined by
the symbol A\ B and is denoted by

A\B={zlreA \=¢B}
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4  G.Pantsulaia Elements of Probability Theory

Remark 1.1 The following formulas
1) QN Uy Ap = mip_ (2 Ag):

2) O\ UpenAr = Meen (24 Ag);

3) QN NP Ak = UR_ (N Ag);

4) QN Nren Ak = Upen (24 Ag).

are valid.

Definition 1.6 A class A4 of subsets of £} is called algebra, if the following
conditions

1) Qe A,

29if A, Bed then AUB e Aand A B e A,

3)if A e A, then 24 A e 0,

hold.

Remark 1.2 The algebra is such a class of subsets {2 which contains 2 and is
closed under the set-theoretical operations ™ M, U, Y 7.

Definition 1.7 A class F of subsets of £ is called o-algebra, if the following
conditions

1)&re F,

) if Ap e F (ke N),then UpeyAp e F and MpeyAp € F,

3)if Ae F, then Q\Ae,

hold.

Remark 1.3 g-algebra is such a class of subsets of (2 which is closed under

-

infinite number of operations ™ m, U, 4 7.

Definition 1.8 A real-valued function F defined on the m-algebra of subsets
of € is called a probability measure(or probability). if the following conditions are
tulfilled:

1) P{A)=0for A eF (The property of non-negativity of the probability );

2) P(0}) =1 { the property of normalization J;

3) if (Ap)pen 18 a sequence of pairwise disjoint elements of F, then
P(UpenAg) = 3 ey P(Ag) ( the proporty of countable-additivity ).

Kolmogoroviaxioms. The triplet (0, F.P), where
1) €2 is a non-empty set,
2) F is a ag-algebra of subsets of 1,
3) P is a probability defined on F,
is called a probahbility space.
€1 is called a space of all elementary events; An arbitrary point w € €2 is called
elementary event; An arbitrary element of F is called an event; (0 is called an
impossible event; (1 is called a necessary event; For arbitrary event A an event
A =0 A is called its complementary event ; The product of events A and

! Andrey Kolmogorov [12{25).4.1903 Tambov-25.10.1987 Moscow| Russian mathematician, Aca-
demician of the Academy Sciences of the USSR (1939), Professor of the Moscow State University.
He has firstly considered a mathematical coneeption of the axiomatical foundation of the probability
theory in 1933,



Set-Theoretical Operations. Kolmogorov Axioms

B is denoted by AB and is defined by An B; The events A and B are called
non-consistent if the event AB is an impossible event; A sum of two non-consistent
events A and B is denoted by A4+ B and is defined by A U B ; For arbitrary
event A the number P(A) is called a probability of the event A .

Definition 1.9. A sum of pairwice disjoint events (Ag)ren is denoted by the
symbol 3, -y A and is defined by

Z A = Upen Ap.-
ke N
Remark 1.4. Like the numerical operations of sums and product, the set-
theoretical operations have the following properties:
1)A+ B=B+ A, AB=BA;
Y (A+B)+C=A+(B+O),
3) (AB)C = A(BC)
4 (A+B)C =AC+ BC, C(A+B)=CA+ CB,
5) CQpen Ak) = Dpen CAk,
6) (X peny Ar)C =D ey ArC

Tests

1.1. Assume that A = [E—ié 1] (ke N). Then
1) the set My<p<ipAg coincides with
a) 51, bR o [ 431
2) the set Us<p<ipAr coincides with
DEI DR o Fl 45
3) the set Uﬁikilﬂ-’ik 1‘-\ [_]1<_;;jci-;]_|:|_4k coincides with
a) 1, Bl b) [%, 1], c) [8.1], d) [7.1[:
4) the set Mpey A} coincides with
a) {1},  b){0}. ) {0}, d) [0, 1];
5) the set U=y A coincides with
DI BB ORI d) 5]
6) the set Ugeny A \ Mgey A coincides with
a) [3.11. b) [2.1[. o) [£.1L  d) [5.1].

1.2. Assume that A, = [% %] (ke N). Then
1) the set Mg<p<10Adg coincides with
a) [m-3:l D) @l ol 4 nk
2) the set Uyp<p=20A4 coincides with
5 25 T 23 21 1 11,
a) [g3.535, b)) [sg.55l, o [ 4 531
3) the set Mgey Ay coincides with
a) [55.3 b [53,  ol33, 4[5 a0k
4) the set [0, 1]\ MgenAp coincides with
a) [0,1]Y [{J.%]U]%;l[, h) [U,%[l_]]%;l]. c) [%%] d) [ﬁ%]
1.3". Let # be a positive number such that % is an irrational number. We set

A={ry)|-1<z<l, —1<y<l}

5



6  G.Pantsulaia Elements of Probability Theory

Let denote by A, a set obtained by counterclockwise rotation of the set A about
the origin of the plane for the angle né. Then
1) the set MgzpAj coincides with
a) {(zy)|z? +o? <1} b) {(zy)|a® + 47 < 2},
o {wy)? +¥ <1}, d) {(z.y)]e® + o < 2);
2} the set Upepy Ay coincides with
a) {(z,y)[e* +9* <1}, b) {(z,y)|2® +4* < 2},
c) {[:r.yﬂ:r:z +y? < 1}, d) {(z.y)|2? +o° < 2}.
1.4, Assume that Q= {0;1}. Then
1) the algebra of subsets of Qis
a) {{0}.{0;1}} b)) {{0}:{0;1}: 0},
o) {0y A{1h{0: 10} d) {{1}{0:1}}:
2} the c-algebra of subsets of £} is
a) ({0701} ), by {{0}: {0:1}:0},
&) ({0 {1h {0 13:0):  d) ({1} {0:1}).

1.5, Assume that Q= [0,1]. Then
1) the algebra of subsets of £ is
a) {X|X < [0,1[. X is presented by the finite union of intervals open from the

right and closed from the right. },

b) {X|X < [0,1]. X is presented by the finite union of intervals closed from the
right and open from the right. },

c) {X|X < [0,1], X is presented by the finite union of closed from both side

intervals. },
d) {X|X < [0,1], X is presented by the finite union of open from hoth side

intervals. };
2) Assume that A4 = {X|X < [0,1] and X be presented as the finite union
of intervals open from the right and closed from the left }.

Then 4
a) is not the algebra, b) is the g-algebra, c¢) is the o-algebra, but is not

the algebra, d) is the algebra, but is not the g-algebra.



Chapter 2

Properties of Probabilities

Let (},F, P) be a probability space. Then the probability P has the following
properties,

Property 2.1 P({) = 0.

Proof. We have ® =0 U ..., From the property of countably-additivity of
the probability P, we have

[l
Py = ZEP(@) = nlﬂ}np(m.
=
Since P is finite, P({!) € R. Hence, above-mentioned equality is possible if and
only if P() = 0.
Property 2.2 (The property of the finite-additivity). If (Ap)j<p<n s a

finite famuly of pairwise disjoint events, then

P(UR_ Ak) = > P(AR).
k=1

Proof. For arbitrary natural number & > n we set A, = (). Following Property
1 and the property of the countable-additivity of P we have

] n = o] T
P(Ui_yAr) = PG4 A0) = ) P(Ax) =) P(Ae)+ ), P(Ay) =) P(A).
Property 2.3. For A € F we have
P(A)=1—P(A).

Proof. Since 2 = A+A and P(Q) = 1, using the property of the finitely-additivity,
we have

1= P() = P(A) + P(A);

-
i
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It follows that
P(A)=1— P(A).
Property 2.4 Assume that A,B e F and A T B. Then P(B)= P(A)+ P(B\ A).

Proof. Using the equality B = A+ (B \ A) and the property of countably-
additivity of P, we have P(B) = P(A)+ P(B " A).

Property 2.5 Assume that A, B F and A C B, then P(A) < P(B).

Proof. Following Property 4, we have P(B) = P(A)+ P(B '\ A). Hence it
follows P(A) = P(B)— P(B\ A) < P(B).

Property 2.6, Assume that A, B e F. Then
P(AUB)=P(A)+ P(B)— P(AB).

Proof. Using the representation AUB = (A\ B)+AB+(B\ A) and the property
of finitely-additivity of P, we have

P(AURB)= P(A)+ P(B)— P(AB).
Property 2.7 Assume that A, B e F, then
PAUR) < P(A)+ P(B).
Proof. Following Property 6, we have

P(AURB)= P(A)+ P(B)— P(AB);

It vields
P(AUB)=P(A)+ P(B)— P(AB) < P(A)+ P(B).

Property 2.8 (Continuity from above). Assume that (A, )pen be an decreasing
sequence of events, i.e.,

(Vn)(n € N — Apyq C Ay).
Then the following is valid
P(MenAy) = lim P(A,).
n—o0
Proof. For n € N we have

Ap = NMgen Ak + (An \ Ang1) + (Angpr \ Ang2) +-- -

Using the property of the countably-additivity of P, we obtain :

o0
P(An) — P(Ngen Ak) = Z P{Anip \ Antpt1)-
=1



Properties of Probahbilities 0

Note that the sum 3 7 P(Anyp\ Angpy1) is the n-th residual series of absolutely
convergent series 3~ P(An \ Ang1). From the necessary and sufficient condition
of the convergence of the numerical series, we have

e 4]
n]-l_,ﬂgozg P(Antp \ Anypt1) = 0.
=

It means that

lim (P(_fqn} — P([_“I;cehr_f’-lkjljl = lim P(.ﬂqn) — F([_]kehrﬂkjl =0,

A—O0 R— o0
1e.,
lim P(Ay) = P(NgeyAg).

N—r30

Property 2.9 (Continuity from below ). Let (Bgplpeny be an increasing se-
quence of events, i e.,
(vn)(n € N — Bp C Bpi1).

Then the following eguality is valid

P(UpenBy) = lim P(B,).

Proof. For U, -y B, we have the following representation
Unen Bn = B1+ (B2 \ B1) + -+ + (B \ Bi) +-- -
Following the property of the countable-additivity of P. we get
P(UpenBp) = P(B1) + P(By\ By) + -+ P(Bjg1 \ B) + - .
From Property 4 we have
P(Biy1) = P(Bg) + P(Biy1 \ Bi).

If we define P(Byyq \ By) from the above-mentioned equality and enter it in
early considered equality we obtain

P(UpenBy) = P(By) + (P(Ba) — P(By)) + -+ (P(Bjy1) — P(Bp)) +- -

Note that the series on the right is convergent. For the sum 5, of the first n members
we have
JSrn — P[ )

From the definition of the series sum, we obtain

P(Une,ﬂ,an) - li]’.'ﬂ Sn - ].]..m P(Bn).

R n—00
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Tests

Assume that (2, F, P) be a probability space.
2.1. Tf P(A) = 0,95, then P(A) is equal to
a) 0,56, b) 0,55, ¢} 0,05, d) 0,03

2.2, Assume that A, B e F, A cC B, P(A) = 0,65 and P(B) = 0,68. Then
P(B\ A) is equal to
a) 0,02, b) 0,03, ¢)0,04, d) 0,05

2.3. Assume that A, B e F, P(A)=0,35, P(B)=0,45 and P(AUB)=10,75.
Then P(A M B) is equal to
a) 0,02, b)0,03, ¢)0,04, d)0,05.

24. Let (Ay)pen be a decreasing sequence of events and P(M,=yA,) = 0,80,
Then lim, ... P(A,) isequal to
a) 0,11, b) 0,12, c) 0,13, d) 0,14.
2.5. Let (A )nen be a decreasing sequence of events and P(A,) = 1‘% Then
P(Mpen An) is equal to
a) %, b) % c) %, d) %

2.6. Let (Ap)nen be an increasing sequence of events and

P(UpenAy) = 0,80
Then limp— o P(An) is equal to
a) 0,11, b) 0,12, ¢ 0,13, d)0,14.

2.7. Let (A, )neny be an increasing sequence of events and P(A,) = ”'3—::‘ Then
P{lUyen Ay is equal to
0l i ol ai

10



Chapter 3

Examples of Probability Spaces

3.1. Classical probability space. Let ()} contains n points, i.e. 3 =
{wi. - .wn}. We denote by JF the class of all subsets of 2. Let define a numerical
munber F by

(YA)(A € F — P(A) = % _,
where | - | denotes a cardinality of the corresponding set.

One can easily demonstrate that the triplet (£2, F, P) is a probability space. This
probahility space is called a classical probability space. The numerical function P
is called a classical probahility.

Definition 3.1 Let A be any event. We say that an elementary event w < (1 is
successtul for the event A if w e A,

We obtain the following rule for calculation of the classical probability :

The classical probability of the ewent A is egqual to the fraction a numerator of
which is equal to the number of all successful elementary events for the event A and
a denominator of which is equal to the nuwmber of all possible elementary events,

3.2 Geometric probability space. Let €2 he a Borel subset of the n-
dimensional Euclidean space with positive Borel 1 measure b, (cf. 55, Example
3). Let denote by JF the class of all Borel subsets of 1. We set

ba(A)
bn (£2)

(VA A e F — P(A) = ).

The triplet (£2.F, P) is called an n-dimensional geometrical probability space
associated with the Borel set (1. The function P is ecalled n-dimensional geometrical
prohability defined on (1.

When a point is falling in the set ) and the probability that this point will fall in
any Borel subset of £ is proportional to its Borel by-measure, then the geometrical
probability of the falling of the point in the Borel subset ¥ C (2 is equal to the

'Borel Felix Eduard Justion Emil (7.01. 1871 —3.03.1956.)-French mathematician, member
of the Paris Academy of Seiences (1921), professor of the Paris University {1909-1941).)

11
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12 G.Fantsulaia Elements of Probability Theory

fraction the nominator of which is equal to b,(Y") and the denominator of which is
equal to by(£2).

Let us consider some examples demonstrating how we can model probability
spaces describing random experiments.

Example 3.1
Experiment - We roll a siz-sided die.
Problem. What is the probabality that we well roll an even number? |

Modelling of the random experiment. Since the result of the random ex-
periment is an elementary event, a space £ of all elementary events has the following
form :

0 ={1:2:3: 4 5:6}.

We denote by F a g-algebra of all subsets of C{i.e. the powerset of ). It is

clear, that
F=A{b {1} {6} {12} {1:2:3: 4 5:6} }.
Let denote by F a classical probability measure defined by

A
(VA (A e F — P(A) = % .
The triplet (€2, F, P) is the probability space (i.e. the stochastic mathematical
model) which describes our experiment.

Solution of the problem. We must calculate the probability of the event B
having the following form :

B ={2;4;6}.
By definition of P, we have
Bl 3 1
FPiB)j="—=—-=—;
(B) B 6 2

Resume. The probability that we roll an even number is egqual to %
Example 3.2

Experiment. - We acecidentally choose 3 cards from the complect of 56 cards.
Problem. What is the probability that in these 5 cards one will be "ace™¥

Modelling of the experiment. Since the result of the random experiment is
an elementary event and it coincides with free cards, the space £ of all elementary
events wonuld be the space of all possible different tree cards. It is clear that

-3
€] = Clyg.

We denote by F a o-algebra of all subsets of €1, Let define a probahility F by
the following formmla
A
Ay e F - pay— AL
C3g

12



Examples of Probahility Spaces 13

Note, that (€2, F, P) is the probability space describing our experiment.

Solution of the problem. If we choose 1 card from the complect of "aces”
and 2 cards from the other cards, then considering all their possible combinations,we
obtain the set A of all threes of cards where at least one card is "ace”. It is clear
that namber of 4 is equal to C j . (.‘.‘%2.

By the definition of F we have

A _ c}-c5

pay— AL _ G-
Cig C3e

Resume. If we choose accidentally 3 cards from the complect of 36 cards, then
1. 72
the probability that between them at list one card would be "ace™ s equal %ﬁz
a8

Example 3.3

Experiment. There are passed parallel lines on the plane such that the distant
between neighbouring lines is equal to 2a. A 21(21 < 2a) long needle is thrown
accidentally on the plane.

Problem (Buffon)? What is the probability that the aceidentally thrown on the
plane needle intersects any of the above-mentioned parallel line?

Modelling of the experiment. The result of our experiment s an elementary
event, which can be defined by x and ¢, where x is the distance from the middle of
the needle to the nearest line and  is the angle between the needle and the above
mentioned hine. It is clear that = and ¢ satisfy the following conditions 0 < ¢ <
a,0<p<m

Hence, a space of all elementary events (1 is defined by

Q=[07] x [0;a] = {(pix):0=p =7 0<z<a}.

We denote by F a class of all Borel subsets of £, Let define a probability P by
the following formula:

ba(A)

(VA)(A € F — P(4) = s

).

Evidently, (Q,F,P) is the probability space which describes our experiment.

Solution of the problem. [t is clear that to the event "the needle accidentally
thrown on the plane intersects any above-mentioned parallel line” - corresponds a
subset Bo, defined by :

By={(p,z)] 0=p=m 0=<z<lsingp}

“Buffon Ceorges Louis Leclere (7.9.1707 -16.4.1788 ) French experimentalist, member of the
Petersburg's Academy of Seiences (1776), member of Paris Academy of Sciences (1733). The first
mathematician, who worked on the problems of geometrical probabilities.)

13



14 G.Pantsulaia Elements of Probability Theory

By the definition of F we have

Wf. in wdo
P(BO) _ b‘z(B) — fl:l 9111'1’ bl _ E.

a - a - am

Conclusion. The probability that the needle accidentally thrown on the plane

needle intersects any above-mentioned parallel line iz equal to %

Tests

3.1. There are 5 white and 10 black balls in the box, The probability that the
accidentally chosen ball would be black is equal to
a) % b) % c) é d) %.
3.2, There are 7 white and 13 red balls in the hox. The probability that between
accidentally chosen 3 balls 2 balls would be black is equal to

o et ol o2 o202 ol .ol
a) —LEQ—LCQD . b) —Ug—'-cm .ol —Lig—LCQD .d) _L&E_L'f-‘zu .

3.3. We roll two six-sided dice. The probability that the sum of dice numbers is
less than 8, is equal to

13 5 1 1
a) SEL) -h) e C) it d.) -
3.4. There are 17 students in the group. & of them are boys., There are staged

7 tickets to be drawn. The probability that between owners of tickets are 4 hoys, is
equal to

R v cic !
a) o b) o ) o d) —r

3.5. A cube, each side of which is8 painted, is devided on 1000 equal cubes. The
obtained cubes are mixed. The classical probability, that an accidentally chosen
ciibe

1) has 3 painted sides, is equal to

1 1 1 1
) woor P o w4 o

2) has 3 painted sides, is equal to
DB b oo )

3) has 1 painted side, is equal to
54 43 45 243
a 2 Mo 9 1. d) g

4) has no of painted side, s equal to
8 G4

3.6. A group of 10 girls and 10 boys is accidentally devided into two subgroups.
The classical probability that in both subgroups the mumbers of girls and boys will
he equal, is

b3
r_ﬂ:‘ﬁ
=

(C'S :lﬂ e (Cs :IEI e
R = SC B (S
an 20 20 20

3.7. We have 5 segments with lengths 1,3, 4,7 and 9. The classical probability
that by accidently choosing 3 segments we can construct a triangle, is equal to

14
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‘1] h) c] d) g

3.8, When rolling two SiK—SlC].Ed dlce. the classm&l probability that
1) the sum of cast numbers is less than 5, is equal to

a) 3“0 b '5‘ c) % d) %;
2} we roll 5 by any die, is equal to

a) 3% b) 38—,3. o) % d) 1

3) we roll only one 5 , is equal to
a) 7. D) 1 c) %. d) 4 19'
4) the sum of rolled numbers cllvldes by 3. is equal to

DL o bi oo b @

5) the module of the difference of rolled numbers is equal to 3, is
a) £ b) 3 o) 2 d) 2
6) the product of rolled numbers is simple, is equal to
i 7 11 2
3.9, We choose a point from a square with inseribed eircle. The geometrical
probahility that the chosen point does not helong to the cirele, is equal to
a) 1—-%, b)) 1-13%. c) 1—-%, d) 1-%

2.10.  The telephone line is damaged by storm between 160 and 290 kilometers.
The probahility that this line is damaged between 200 and 240 kilometers, is equal
to

a) % b) 12—3 o) 14—3 d) %

3.11. The distance hetween point A and the center of the circle with radins R
is equal to d (d > R). Then:

1) the probability that an accidentally drawn line with the origin at point A,
will intersect the gircle. is equal to . . o

‘L] 2 a:rc:_m(?jl b ‘;I 3 a'rc::n(?) ‘ {‘.] arcs:rnl:?j . d] 2 ar-:szn(T);

2 the probahbility that an accidentally drawn ray with origin A, will intersect

the circle, is equal to

‘jl avcsm( i!:' h:l BGrcs:-n(Ejl {‘.] avcsz;:(%]l, d.:l Zarcs;n(%j .

212, We acmdentall},-' choose a point in a cube, in which is inseribed a ball. The
geometrical probahility that the chosen point does not belong to the ball, is equal
to

a) 1-%, b)) 1-F, c) 1-F, d) 1-5%

3.13.We accidentally choose a point in a ball, in which is inscribed a cube. The
geometrical probability that the chosen point does not belong to the cube, is equal
to

/3 ] /3 e
a) 1-22 p)1-3¥2 o) 1-¥ 4 1-¥¢

3.14. We accidentally choose a point in a tetrahedron , in which is inscribed a
hall. The geometrical probahbility that the chosen point does not belong to the ball,
is equal to

5my2 5m/2 T Bw/2

15



16 G.Pantsulaia Elements of Probability Theory

3.15. We accidentally choose a point in a ball, in which is inscribed a tetra-
hedron. The geometrical probability that the chosen point does not belong to the
tetrahedron, is equal to

1243 _ 2/3 123 12,3
a) 1—=p=. b) 1—-5=, ¢ 1-5= d) 1-55.

3.16. We accidentally choose a point M in a square A, which is defined by
A={lzy):0<z<1 0<y <1}

The geometrical probability that coordinates (x,y) of the point M satisfv the
following condition

Ty =

[

is equal to
3 3 3
a) 5. b 1 c) %, d

11k ]

3.17.We accidentally choose a point in a square A, which is defined by

The geometrical probability that coordinates (x,y) of the point M satisfv the
following condition

m

D<y=

o] =

sin(z) <y <,
is equal to
a) - b)) LA o i-2. d) 1- L

3.158.We accidentally choose a point M in a cube A, which is defined by :
A={r,yz):0=r=<1,0=y=<1,0<z<1}

The geometrical probability that coordinates (x,y,z) of the point M satisfy the
following condition

PP+ vyt

e
[ e

is equal to

a) Tl b) ATl o) T2 q) TR

3.19. Two friends must meet at the concrete place in the interval of time [12 —
13] . The friend which arrived first waits no longer than 20 minutes. The probability
that the meeting between the friends will happen within the mentioned interval, is

equal to
5 E H ]
a) 5. b) %. ) %. d) %

3.20. A student has planned to take money out of the bank. It is possible that
he comes to the bank in the interval of time 14°°15 — 14925, Tt is known also that
the robhery of this bank is planned in the same interval of time and it will continme
for 4 minutes. The probability that the student will happen to be in the bank in
the moment of robhery is equal to

a) 5. b) 7 < 3= 4

16
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3.21. We accidentally choose three points A, B and C' on the circumference of a

circle with radius K. The probability that ABC is an acute triangle is equal to
1 b) 1 ) 1 1) 1
a) . h) 3. c) £, d} g

3.22. We accidentally choose two points €' and D on section [AB] with length
{. The probability that we can construct a triangle by the obtained three sections
is equal to:

==

a) %, h) % c) %, d)
i

3.23. We aceidentally choose point M = (p,q) in eube A which is defined by :

A={(pg):0=p=10=g=1}

The geometrical probability that the roots of equation 22 + px + ¢ = 0 will be real
mumnbers is equal to

a) ﬁ, b) % c) é d) .

3.24. We accidentally choose point M from the sphere with radius R, The

probability that distance p between point M and the center of the above mentioned

sphere satisfies condition % < p< 335. is equal to

a) g=. b) %, c) % d) 28—9.

17
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Chapter 4

Total Probability and Bayes’
Formulas

Let (€2.F, P) be a probability space and let B be any event with positive
probability (i.e., P(B) = 0).
We denote with P(- | B) a real-valued function defined on the o-algebra F by :

P(X 1 B)

|:_"-.TI_-'T|; :”i.l = ..?'— —* Pl:__}a. |B:| - W’L

The funetion Pi- | B) is called a conditional probability relative to the hypothesis
that the event B occurred.

The number P(X|B) is the probahility of the event X relative to the hypothesis
that the event B occurred.

Theorem 4.1. If B € F and P(B) = 0, then the conditional probability P(- | B)
is the probability.

Proof. By the definition of P(- | B), we have:

1) P(A|B) =0 for AeF;

2) P(OB)=1;

3) If (Apreny is a pairwise-disjoint family of events, then

P(Upen Ag|B) = z P{Ay|B).
k=N
The validity of 1) follows from the definition of P{ - | B) and from the
non-negativity of the probability P. Indeed,

PiANE) _ 0

P(AIB) = —fp= 0.

The validity of 2) follows from the following relations

PQn By P(B)

0B = = =1
POUB) = =55 = by

19
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20 (G.Pantsulaia Elements of Probability Theory

The validity of 3) follows from the countable-additivity of P and from the
elementary fact that if (A, )ey is a family of pairwise-disjoint events, then the
family of events (A, M B),zn also has the same property. Indeed,

P((UnenAn) N B) _ P(Unen(4. N B)) _

P(Uney Aa|B) = P(B) = P(B)

> nen Plan N B) P(A, N B)
5] Z; 5B > P(4, | B)

nelN
This ends the proof of theorem.

Theorem 4.2 If P(B) = 0, then P(B|B) =0.

Proof.

P(BEnB) Py

_— _ _
P(BIB) = —pE = BB

0.

Definition 4.1 Two events A and B are called independent if
P{AnB)= P(4)- P(B).

Example 4.1 Assume that @ ={(z.y): = £ [0:1],y £ [0:1]}
Let F denotes a class of all Borel subsets of {2, (ef.Chapter 5, Example 5.3).
Let denote by F the classical Borel probability measure b on £2. Then two events

1
A={lz.yzeiglye01]}h

and 13
B={{r,y):ze0:1],y < [EE }

are independent.
Indeed, on the one hand, we have

1 1 3 1 1 1
= = \l: = :_1 :'_;_ —_ . = —.
P(ANB)=by(AnB)=b({(e,9): 2 € Ol yelziql =5 1 =3

On the other hand, we have

P(A)- P(B) = by(A) b(B) = 5 - }1 _ %

R =

Finally, we get
P{AnB)= P(4)- P(B),

which shows us that two events A and B are independent.

Theorem 4.3 If two events A and B are independent and P(B) = 0, then
P(A|B)= P(A).
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Proof. From the definition of the conditional probability, we have

P(ANEB)

P(AIB) = —Fp

The independence of events A and B gives P(A N B) = P{4)- P(B). Finally, we
get
P(ANB) _P(A) P(B)

P(B)y P(B)

This ends the proof of theorem .

P(A|B) = = P(A).

Remark 4.1 Theorem 4.3 asserts that when events 4 and B are independent
then any information concerned the oceurrence or non-occurrence of one of them
does not affect the probability of the other.

Theorem 4.4 If two events A and B are independent, independent ave also
events A and B .

Proof.

PANB =P AnB)=P(QnB)\ (AnB)) =
=PB\(ANB)=PB)-P(AnB)=P(B)-P(A)- P(B) =
= P(B)(1 - P(A)) = P(B) - P(A).
This ends the proof of theorem.
Example 4.2
Experiment. - We cast two siz-sided dice.

Problem. What is the probability that the sum of rolled numbers is equal to 8
relative to the hypothesis that the sum of rolled numbers is even ¥

Modelling of the experiment. A probability space {} of all elementary
events has the following form

Q={({z,y):zeNyeN 1=x2<6,1=<y= 6},

where r and y denote rolled numbers on the first and second dice, respectively.
We denote with F a class of all subsets of {1. Let P denote a classical probabil-
ity. Finally, probability space (Q,F,F) deseribing our experiment is constructed.

Solution of the problem. Let denote with A a subset of £} which corresponds
to the event:
" The sum of rolled numbers is equal to 8 .
Then, the event A has the following form:

A=1{1(6:2); (5:3); (4:4); (3;5); (2;6) }.

Let denote with B the following event:
"The aum of rolled mumbers is even”.

21



22 (. Pantsulaia Elements of Probability Theory

We have
B={(11); (1;3); (2:2); (3;1); (1:5); (2;4); (3:3);(4:4); (5;1);

(6:2): (5;3):(4:4); (3:5); (2:6); (6:4); (5:5); (4:6):(6:6) }
Note that An B = A. By the definition of the classical probability we hawve:

_P(ANB) 5 18 5

Resume. If we cast two six-sided dies then the conditional probability that
the sum of rolled mumbers is equal to 8 relative to the hypothesis that the sum of
rolled numbers is even, s equal to %.

Definition 4.2 Let, J © N. A family of event (4;);=7 is called a complete
system of representatives if :

1) Ain Ay = 0, 4,5 di#],

2) (Wi)je J— P(4;) = 0),

3) Ujer 4; =1L

Theorem 4.5 Let, J C N and (A;) =5 be a complete system of representatives.
For arbitrary event B the following formula

P(B)=)_ P(B|4;) Pi4;)
jed
is valid, which is called the law of total probability.

Proof. We have

where (B M Aj) =0 is a family of pairwise-disjoint events.
Indeed, we hawve,

B=EBn{l=EBn iUierd;) = UjEJ[B mA;).
Hence, from the countable-additivity of F we have

P(B)=3 P(BnAy).
jed
Note that for arbitrary natural number j (7 £ J) we have
P(BrmA;)

P(BIA) = =5
3/

Hence,

P{Bn A;) = P(4;) - P(B[4;).

22
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Finally, we get

P(B)=) P(BrA;)=)_ P(4;) - P(B4;).

jed jed
This ends the proot of theorem.
Example 4.3

Experiment. There are placed 3 white and 3 black balls in an wrn I, 5 white
and 4 black balls in an wrn [ and § white and I black balls in the wn III. We

accidentally choose a box and further acecidentally choose a ball from this wrn.

Problem. What is the probability that accidentally chosen ball is white if the
probability of a choice of any wrn is egual to % g

Solution of the Problem. Let A; denote an event that we have chosen i-th
urn (1 < ¢ < 3). Then we obtain that P(4;) = P(4;) = P{4,) = %

Let B denote an event which corresponds to the fact that we have chosen white

hall.
By the definition of the esonditional probability, we have

P(B|A)) = % P(B|As) = 2. P(BlAg) = %
i

Using the formula of total probahility, we have

1 3
3

P(B)=- -+ =

n 4 57
5

1
3

-1

11
3 2

Resume. The probability that accidentally chosen ball will be white in our exr-

i i AT
periment is equal to 1A%

Fxample 4.4

Experiment. The probability of formation of k-bacteria (k & N) is equal to
%e_l (A= 0). The probability of adaptation with enwvironment of the formed bae-

terinm 18 equal top (0 <p<1).

Problem. What iz the probability that n bacteria (n € N) will pass the adap-
tation process ¥

Solution of the problem. Let Ap be the event that & bacteria (k € N) pass
adaptation process. Note that [Ag)eey is a complete system of representatives. Let
B, denote the event that n baqteria pass the adaptation process in £ N) . Note
that P(B,|4x) =0, when k <n—1.If k > n, then P(B,|Ay) = CPp™(1—p)*—™.
We have

"j".nl — i =T
P(B,) =Y P(Ax)P(By|A) =) e Cip"(1-p)* " =
keN b=n

23



24 G.Pantsulaia Elements of Probability Theory

aj"j'l —X k! k—n __
=2 g =

A" Ak-n . 1— e
_ lpA) E_l}'z-[k—ﬂ.il_pﬁ_ﬂ: Al —.I.Z PJJ _

. n P n
= u; E:_'}'E:'}"Ll —P) = Ep_.r_f't;] E‘:_P"}'.

Resume. The probability that n  bacteria pass the adaptation process (n =
N s equal to %E—P'J‘.

Theorem 4.6 Assume that J C N and (A;);=1 be a complete system of
representatives. For every event B with P(B) = 0 we have

PA)P(BIAY .

P(4,B)
| Yo P(A )P(B[4;) /

which is called Bayes’ 1 formula.

Proof. Using the total probahility formula and the definition of the conditional
probability, we have

P(4;nB) _ P(A;)P(B|4;)
P(B) 3,0 PA,)P(BIA) |

This ends the proof of theorem.

P(A4B) = icJ.

Example 4.5 Assume that we have chosen a white ball in the erperiment con-
sidered in Erample 3.

Problem. What is the probability that we have chosen white ball from the first
urn ¥

Solution of the problem. By the Bayes' formula we have

_ P(A,) - P(B|4,) _1
P‘( BlAl +PI:A2 BlAgJ 3

P4, |B)

2 57 2
57105 9

Example 4.6 { A problem about ruin of the player ). Let consider the problem
concerned with throwing of a coin, when playing "heads™ or "tails”. If comes the
side of the coin which has been chosen by the player, he wins [ lari. In other case
he loses the same amount of money. Assume that the initial capital of the player is
x lari and he wishes to inerease his capital to a lari (2 < a). The game is finished
when the player (s ruined or when he ineveases his capital to a lari.

Problem. What is the probability that the player will be rained ¥

Solution of the problem.
Let p(x) denote the probability of the ruin of the player when his initial capital
is = lary. Then after one step in the case of winning the probability of the ruin will

iBac.'es Thomas{1702, London-4.4.1761, Tanbridj )-English mathematician, the member of Lon-
don Royal Society (1742) main works in probability theory (1763).
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be p(r+ 1), in other case same probability will be p(x —1). Let By denote the event,
which corresponds to the ease when the player wins in the first step. Analogously,
denote by B: the event, which corresponds to the case when the player loses in the
first step.

We denote by A the event which corresponds to the min of the player. Then by
the definition of the conditional probability, we have

P(A|By) = p(z + 1), P(A|By) = p(z —1).

It iz clear that (B}, Bz) 15 a complete system of events. Since the coin is

symmetrical, we have .
P(B\) = P(B;) = 3

Using a total probability formula, we have

1
plz)=glplz +1) +plz —1)].
Note that the following initial conditions p(0) = 1 and p(a) =0 are fulfilled. One

can easily check that the following linear funetion
plr)=e + e,
whose coefficients are defined by
pl0)=a =1, pla) = +eza=0,

is a solution of the above mentioned equation.
Finallv, we get

plr)=1-— E, 0< a2 < a.

Resume. The probability p(x) that the player will be ruined in the above deseribed
game in the case when his initial eapital is equal to x lari, is equal to 1 — Z, (0 =
= a).

Example 4.6 (The problem about division of game between
hunters). The probability of shooting the game for the first hunter is equal to 0,8
The same probability for the second hunter is - 0,7. The beast was shot with simul-
taneous shots, but with only one bullet. The mass of the game was 190 kg. It was
found that the game was killed with one bullet. How should the game be devided
between hunters?

Solution of the problem. Let B denote the event that the game was killed
by one hunter in the case of simultaneous shots. Let 4; and As denote events that
the animal was killed by the first and the second hunters, respectively. Using Bayes’
formulas we obtain

0,3-0,8 12

PA B = = —,
(4lB) 0,3-0,84+0,2-0,7 19

25
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0,2-0,7 _ 12
0,3-0,84+0,2-0,7 19
It follows, that FP(A4,|F)-190 = 120 (keg) of the game belongs to the first hunter and
FP{Az|E)-190 = 70 (kg) of the game belongs to the second hunter, respectively.

P(A;|B) =

Tests

4.1. Two shots shoot a target. The probability that the first shot will hit
the shooting mark is equal to 0,9, Analogous probability for the second shot is
0,7. Then the probability that the target will be hit by both shots, is equal to

a) 0,42, h) 0,63, ¢) 0,54, d) 0,36.

4.2, The mumber of non-rainy days in June for Thilisi is equal to 25. The

probability that the first two days would be non-rainy is equal to
5 20 19 18
a) BT h.] e D:' R d:' T
4.3. We have accidently chosen two points A and B from set A, which is defined
by

A={(z,y):z e [Drl]r = [Drl]}~
The functions g and f are defined by

1, if 24+ <
= ! -
QHT~PJ, { D,. if IE + yz -

| e =

_ [0 if r4y=id,
sem={ 1 iy
Then the probability that g(A)+ fiB) =1, is equal to

1 ™ 1 ™ =] T ™
a) ;-5 bl 3z-3 o g-3% 4 1-3F

4.4. Here we have three boxes with the following composition of balls

Urn | Black balls | White balls
I 2 3
IT 3 2
IIT 1 4

We accidently choose a box, from which accidentally choose also a ball.
1) The probability that the chosen ball i= white, is equal to
a) 0,4, by 0,6, ¢ 0,7, d) 0,8
2) It is known that an accidently chosen ball is white. The probability that we
have chosen a ball from box I, i= equal to

IR VIE NI S

4.6. 100 and 200 details are produced in plants T and IT, respectively. The

probabilities of the producing of a standard detail in plants I and IT are equal to
0,9 and 0,8, respectively.
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1) A damage caused by realization of non-standard details made up 3000 lari.
A fine which must be paved by the administration of plant I'1 caused realization of
its non-standard details is equal to
a) 2400 lari, b) 2300 lari,  ¢) 2000 lari,  d) 1600 lari;
2)The profit received by realization of standard details made up 5000 lari. A
portion of the praofit due to plant I is equal to
a) 1800, b) 1700, ) 1400, d) 3000

4.7. The player chooses a "heads” or "tails”. If comes the side of the coin which
was chosen by the player, then he wins 1 lari. In other case he loses the same mouny.
Assume that the initial capital of the plaver is 1000 lari and he wishes to increase
his eapital to 2000 lari . The game is finished when the player is ruined or when the
player will inerease his eapital to 2000 lari. What is the probability that the player
will increase his capital to the until desired amount ?

a) 0,4, b) 0,5, ¢ 0,6, d) 0,7

4.8 The probability of formation of k-bacteria (k € V) is equal to Eﬁ,—ke—” . The
probability of the adaptation with environment of the formed bacterium is equal to
0,1.

1) The probability that at least 5 bacteria will pass the adaptation process is
equal to
a) g€ . i .
2} The ohservation of the aceidentally chosen bacterium showed us that it has
passed the adaptation process. The probability that this bacterium helongs to the
adapted family consisting of 6 members, is equal to

0,035 se 0,08 _noa 0,035 oo 0,03° ooz
a) i mere 0 b b)) S i (hl war e )-

0.03%  _pons 0.04% 0,04 0.05% 0,05 0,06 0,06,
—F S h:| —'51—9 . C:| —'51—9 . dj ?E" N
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Chapter 5

Applications of Caratheodory
Method

§5.1. Construction of Probability Spaces with Caratheodory ! methaod.

Let £1 be a non-empty set and let F' be any class of its subsets.

Lemumna 5.1.1 There exists a o-algebra o(F') of subsets of (1, which contains the
class F' and is minimal in the sense of ineclusion in such o-algebras which contain

F.

Proof.  Let (JF;);c; denote a family of all g-algebras of subsets of £ which
contain ' and define class o(F) by the following formula :

a(F'y = NjerF;.

Let show that o(F) is a g-algebra. Indeed,

1)t € a(F), becanse Qe F; for je J.

2) Let {Ag)r=y be any sequence of elements of #(F'). Since this is a sequence of
elements of F; for arbitrary j € J, we conclude that Mg=y Ap £ F; and Ugey Ax €
Fi. The later relation means that MrevAr € Nz F; € o(F) and Ugey Ay €
ﬁjej.?'—j = ULFZI

3) If A € o(F), then 4 € F; for arbitrary j € J. The later relation means that
Ac f-]jgj.:-'t_-,i =a(F).

Now assume that o(F') is not minimal (in the sense of inclusion) #-algebra of
subsets containing F'. It means that there exists a g-algebra F¥, such that the
following two conditions

1) FcFy

2) F*Ca(F)and o F)\ F* £ 1,

are fulfilled.

YCaratheodory Constentin (1201873, Herlin—2.2.1950, Minhen )-German mathematician.

Professor of the Miinhen University (192{-39), Lecturer of the Athena University/1933). Main
works in theory of measures.

29

29



30 G.Pantsulaia Elements of Probability Theory

By the definition of family (F;);cs there exists an index j; £ J such that
Fiy = F*. Henee, oF) < F*, which contradicts to 2) . So we have obtained a
contradiction and Lemma 5.1.1 is proved.

Definition 5.1.1 Let 57 and Sz be two classes of subsets of {2 such that 57
Sz, Let Py and Pe be two real-valued functions defined on 57 and Sa, respectively.
Funetion P is called an extension of function P if

(YX)X € 5 — P(X) = P(X)).

Definition 5.1.2 Let 4 be an algebra of subsets 2. A real-valued function P
defined on .4 is called a probability if the following three conditions

1) PlA) =0for 4 € A,

2) P =1,

3) If (Ar)pew is a pairwise disjoint family of element of 4 such that Uy Ag
A, then

P(UgenAr) = Y P(Ay),
ke

are fulfilled.

The general method of the construction of probability spaces is contained in the
following Theorem.

Theorem 5.1.1 (Charatheodory ). Let A be an algebra of subsets of £ and P be
a probability measure defined on A. Then there erists a unigque probability measure
P on a(A) which is an ertension of P. It is defined by the following formula:

(YB)(B € o(A) — P(B)=inf{ Y P(Ay)[(vk)(k € N — A € o(A))
kelN
& B C UpenAr }-
Remark 5.1.1 The proof of Theorem 1 ecan be found in [6] .

Below we consider some applications of Theorem 5.1.1.

5.2. Construction of the Borel one-dimensional measure b on [0,1]

Let A denote a class of subsets of [0,1] elements of which can be presented as
a union of finite number of elements of the form

lar.bel, [ar, 0] Jaw. bel, Jai, by

One can easily show that 4 is an algebra of subsets of £2. We set

P(lag. bi[) = Pi[a, bi]) = P(lag, be[) = Pllak, b)) = be — ax
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Applications of Caratheodory Method 31

In natural way, we can define P on the union of a finite number of disjoint elements
of .A. It is not difficult to check that P is a probability measure defined on .A.
Using Theorem 1 we dednee that there exists a unique extension P on o(.A4).

A class o(A) is called a Borel o-algebra of subsets of [0, 1] and is denoted by
B([0,1]). The probability P is called one-dimensional classical Borel measure on
[0,1] and is denoted by b,

([0,1]. B([0,1]),81) is called a Borel classical probability space associated with
[0,1].

5.3. Construction of Borel probability measures on R

Let F': R — [0,1] be a continuous from the right function on R, which satisfy
the following condition:

lim Fz)=04& lm F(z)=1.

T——2 r—to0
Weset Fi—oc)=0 and Fi+)=1.
Let 2= R U {40},
Let .4 denote a class of all subsets of £2, which are represented by the union of
finite number of "semi-closed intervals” of the form (a, b, ie.,

bl

A=1{A]A =Y (a. b},

i=l1

where —co < a; < by < 00 (1 <0 < n).
It is easy to show that .4 is an algebra of subsets of 2. We zet

n ks

P(A)=P(Y (ai,b]) = Y [F(bs) — Flas)].

i=1 i=l1

One can easily demonstrate that the real-valued funetion F is a probahbility defined
on 4. Using Charatheodory theorem we deduce that there exists a unique prob-
ability measure P on o(A) which is an extension of P. The class o(4) N R is
called a Borel m-algebra of subsets of the real axdis R and is denoted by B(R). A
real-valued function Pp . defined by

(¥X)(X & B(R) — Pr(X) = P(X)),

is called a probability Borel measure on R defined by the function F.

Example 5.3.1. Let F be defined by

T 22
(vr)re R—F(x)= xé_wj:me—Tdr .

Let Pg be a Borel probability measure on R generated by F. Then
(L, F,.P) = (R,Bi(R),Fr) is called a canonical one-dimensional Gaussian Borel
probability space, associated with one-dimensional Euclidean vector space R(= R!).
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32 (G.Pantsulaia Elements of Probability Theory

The real-valued funection Pr is called one-dimensional canonical Borel probability
measure on K and is denoted by I'y.

5.4. The product of a finite family of probahbilities

Let (02,05, P )1<i=n be a finite family of probability spaces.
We introduce some notions.

i= valid, where B; 2 5 (1 <i< n).

Let A be a class of all subsets of []_; ; which are represented by the union
of a finite number of pairwise disjoint eylindrical subsets of []I_; €;. Note that 4
is an algebra of subsets of T | {1

We set
HB )= HP B;)
i=l1

and extend in the natural way a function P on class 4. Now one can easily
demonstrate that function P is a probability measure defined on algebra 4. Using
Charatheodory theorem there exists a unique probability measure P on a(.4) which
extends P. Class o(.A) is called a product of the family of o-algebras (Fi)1<;
and is denoted by [[; <, Fi- The probability P is called a product of the famllv
of probabilities | F;)<; ﬂ, a,nd is denoted h‘l.' i P

The triplec (T, @4, [15, Fi. T, ) is called a product of the family of prob-
ability spaces (Q;, F;, P)i<i<n.

Remark 5.4.1 Let consider a sequence of n independent random experiments.
[t is such a sequence of n random experiments when the result of any experiment
does not influence the result of the next experiment.

Agsume that i-th (1 < ¢ < n) experiment is described by a probability space
I:m,,‘}'-_ F;) Then a sequence of n independent random experiments is described by

1~-"~H~—1v'r io1 Fi).

Here we consider some examples.

Example 5.4.1 (Bernoulli ? probability measure).
We set

*Jacob Bernoulli (27.12.1654-16.8.1705 j-Swedish mathematician, professor of Bazel University
(1687 ). Him belongs the first proof of the so called "Bernoulli theorem” (which is a partial case of
the "Law of Large numbers™ ) (cf. " Arsconjectandi” | Basilege)(1713).
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0 =1{0,1}, Fi={A|AC s}, B({1})=p

forl<i<nand0<p<l.
The produet of probability spaces

ISR
i=1 =1 i=1
is called the Bernoulli r-dimensional classical probability space. [T | F; is called
the Bernoulli n-dimensional probability measure.
If we consider a set Ay defined by

i T
i=1 im
then nsing the structure of the above-mentioned measure, we obtain
n
(7l wa)M(wr, o ywp) € A = [ Rllwr - wa)) = 241 —p)" ).
i=1

Hence, [, Pi(Ax) = |Ag|p"(1 — p)»~*, where |-| denotes the cardinality of
the corresponding set. It is easy to show that |Ag| = C%, where €% denotes the
cardinality of all different subsets of cardinality & in the fixed set of cardinality n.

The probability J[i_, Pi(A) is denoted by F,(k) , which means that during
n-random two {0, 1}-valued experiments the event {1} had oceurred k-times, if
it is kmown that the probability of event {1} in an arbitrary experiment is equal
to p. If we denote by g the probability of event [0}, then we obtain the following
formula

Pyk)=Ciphg" (1 <k <),

—_ g

which is called Bernoulli formula.
A natural number kg € [0, n] is called a number with hight probability if

-Hh)=£ﬁ;&HL

The nunher ky with hight probability is ecaleulated by the following formula

b — [(14n)p], if (14+n)pé¢Z;
71 (l4+npand (14+n)p—1, if (1+n)peZ,

where [ ] denotes an integer part of the corresponding number.

Example 5.4.2 ( n-dimensional multinomial probahility measure).
Let triplet (£, F, Pi)1<i<n be defined by :

b) F; is a powerset of (}; for 1 <i < n;

O Pz =p; =0, lsi<n l<j<hk T p=1
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Then triplet ([T y @4, [Tisy Fi, [Tiey B) is called n-dimensional multinomial
probability space. A real-valued function [], P;is called n-dimensional multino-
mial probability.

If we consider a set A,ing,--- ,ng). defined by

n
Aﬂ-tnlr"' :-T"'j-':I = {lz“-’l'- swn:'vav‘lr" :-wn:' = ]:['-ﬂ-'-'r &
i=1

{irwi=mpl =np, 1 =p =k},

then using the structure of the product measure, we obtain

(lvll:,wl:\-" : &wﬂ,]:”:,l:u-:l'u e 'u‘"'-‘:i".!-:l = Aﬂl:nl'u"' 1n.l!c,:| —

il
[T Piltwr, - vwn)) =p7t = - = pp*).
i=1
HEHCE:- ]:[?:1 Ei':Aﬂ':nl'- M) = |Aﬂtn1:-' o ,?’lj,-:ll * p?i Hormrm p::k" where | ’ |
denotes the eardinality of the corresponding set. It is not difficult to prove that
[An(r, - o)l = i
Then probability  J]7, Pi(Aa(rr. - .ng)) (denoted by  Fyiny, - ,ng)) as
sumes that during n-random  {xq,- - . 2p}-valued experiments the event »; will
oecur np-times, - - -, the event ;. will oceur ng-times if it is known that in i-th
experiment the probability that the event »; oceurred is equal to p; (1 < i < k),
i= calculated by the following formula
n! -

PR |

Pn[ln].‘ . ,nk) — 1—
Tigi ¥ === X T

w ot
This formula is ealled the formula for ealeulation of n-dimensional multinomial prob-
ability.

Example 5.4.3 (n-dimensional Borel elassical measures on [0,1]* and R").

Assume that a family of probability spaces (£, F, Fihi<i<n i8 defined hy:

a) 0, =[0,1] (1 <i<n),

b) F; = B([0,1]) (1 =i < n),

c) Pi=b, (1 =i=n).

Then triplet (TT2, . [Ty 5 [T, i) is called n-dimensional Borel proba-
hility space assoclated with n-dimensional cube [0,1]" . The real-valued function

[T, P is called n-dimensional classical Borel measure defined on [0, 1]".
The real-valued funetion b, . defined by

(VX)X € B(R) = ba(X) = > [T R0 ["N(X — R))),

heim i=1

i= ealled n-dimensional classical Borel measure defined on K™,
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Example 5.4.4 Assume that a family of functions (F} )<<, is defined by

1 * e
Filive)l<i<ndrc R— Er)= — e~ T dt ).
( .ll:. .ll: —_ —_ ( ,:I 1% _ g

L]

Agssume also that P, denotes the probability measure on R defined by F;. Then
the probability space ([[-;2, i, [Tiew Fis [Licw Fi) is called n-dimensional Gaus-
sian canonical probability space associated with R™.

The real-valued function [],.,-,, P is called n-dimensional Gaussian canocnical
probability measure on B® and is denoted hy T,

5.5. Definition of the Product of the Infinite Family of Probabilities

Let (%}, 5. Fi)ier be an infinite family of probability spaces.
We set

[ = dlwier - wieic I}
i=f

A subset A C [,y (ki is called a cylindrical set, if there exists a finite mumber
of indices (ig)1<p<n and such elements ( By, )1<p<n of o-algebras (5, J1<p<n that

B = {{wi)icr @ (wi 8,

ie I\ Ui {ic} ) & (wi € Byyi € U {ix}) |-

Let A denote a class of such subsets of TT._,{% which are presented by the
union of finite number of pairwise disjoint cylindrical subsets. Note that class A is
an algebra of subsets of T, (.

Define a real-valued function F on the cylindrical subset B by the following

formula
n

P(B) =[] P.(By,)
=1
and extend in natural way a functional F on elass 4. Clearly, a real-valued funection
P is the probability defined on algebra 4. Using Charatheodory theorem we deduce
the existence of the unique extended probability measure P on class a(A4). The
class of subsets o(.4) is called the product of the infinite family of o-algebras
(Filier and is denoted by [[,.;Fi. The real-valued function T i= called the
product of the infinite family of probabilities {F;)ic; and is denoted by [[,o; Fi
Triplet ([T, €. I1;cr Fis [1i2p F2) I8 called the product of the infinite family of
probability spaces (£}, F;, Pi)izg.

Remark 5.5.1  An infinite sequence of independent experiments is such a
sequence of experiments when the result of each experiment does not influence on
the result of any next experiment.

Assume that é-th (i € I) random experiment is described by the probability
space ({1;, F;, Fi). Then an infinite sequence of independent experiments is described
by the triplet
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1o 17117

iel
Let consider zome examples.

Example 5.5.1 For i € N we set

where 0 < p<1.
The produect of the infinite family of probability spaces

HM,HE,HH)

ieN ieN

is called the infinite-dimensional Bernoulli classical probahility space. A real-valued
funetion [T, F; is called the infinite-dimensional Bernoulli classical probability .

Example 5.5.2 {Infinite-dimensional mmltinomial probability space). Assume
that an infinite family of probability spaces (£, 5, Pilizy is defined by :

a) fy=4r1.-- 2} (ie N),

b) F; is the powerset of £}; for arbitrary i N

) Pi{z;})=p; >0, ieN, 1<k 25 p=1

Then (JTizp Qi [Licw ‘F,_]_LE_V F;) is called the infinite-dimensional multino-
mial probability space. The real-valued function [[;_5 F; is called the infinite-
dimensional multinomial probahility.

Example 5.5.3 (Infinite-dimensional Borel classical probability measure on
infinite-dimensional cube [0, 1]V).

An infinite family of probability spaces (€2, F;, F;) ;- is defined hy:

a) £, =1[0,1 (i e N),

b) £ = B(0,1]) (i € N),

c) Pi=b (ieN).

([Tiew 4, [Liew Fis [Licw 5} 1= called the infinite-dimensional Borel classi-
cal probability measure associated with infinite-dimensional cube [0, 1]"" Measure
[Lizw F: is called the infinite-dimensional Borel classical probability measure on
infinite-dimensional cube [0, 1]-'1"' and is denoted by by .

Example 5.5.4 Assume that an infinite family of functions (EF});=x is defined

by

(Wi)(Vz)ie N& re R— Fijx f_ .

Let P he a Borel probability measure on R defined by F;. Then triplet
(TLicw 2 TLiew Fi [Licy Fi) is called the infinite-dimensional Gaussian canonical
probability space associated with BY. The real-valued function [Licx F: is called
the infinite-dimensional Gaussian canonical probability measure defined on BV and

is denoted by Ty
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Tests

5.1.There are 10000 trade hooths on the territory of the market. The probability
that each owner of a booth will get profit 500 lari during one quarter is equal to
0,5. Further, the probability that the same owner of the booth loose 200 lari during
the same quarter is equal to 0,5, The number of such owners of trade hooths |
which at the end of the vear

1) will loose 800 lari, is equal to
a) 625, b) 670, ) 450, d) TOO;
2ywill loose 100 lari, is equal to
a) 2500, b)) 3000, ¢) 2000, d) 3500:
3) will get a profit of 600 lari, is equal to
a) 3750, by 3650, ¢) 3600, d) 3400;
4)will get a profit of 1300 lari, is equal to
a) 2500, b)) 2000, ¢) 3000, d) 1500:
5) will get a profit of 2000 lari, is equal to
a) 625, b) 650, ) 600, d)550.

5.2. Wholesale storehouse supplies 20 magazines. It is possible to get order for
the next day from each magazine with probability 0, 5.

1) The number of hight probability of orders at the end of the day is equal to
a) 10, h) 11, ) 12, d) 13;
2) The probahility corresponding with the number of hight probability of orders

at the end of the day is equal to

a) Czlgﬁlﬁ b) Czuﬂv\ c) CEDW d) (’%j?iﬁ

5.3. There are three boxes numerated by numbers 1,2, 3. The probabilities, that
a particle will be placed in the box 1,2, 3 are equal to 0.3, 0.4 and 0, 3, respectively.
The probability that out of & particles 3 will be placed in box 1, 2 particles will
be placed in box 2 and one particle will be find in box 3, is equal to

4 2 41 4 2 5l 4 2 4 2
a) 720,340, 4%, b) 74L-0,3%0,42, ¢) 52-0,3%0,42, d) 580,30, 42,
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Chapter 6

Random Variables

Let (£}, F, F) be a probability space.
Definition 6.1 Function £: 1 — R is called a random variable, if

(Vz)re R—{w:well, {w) <z} eF)

Example 6.1 Arbitrary mandom variable £ : {1 — R can be considered as a
definite rule of dispersion of the unit mass of powder £} on the real aris R, according
to which each particle w € Q@ will be placed on particle A € R with coordinate £(w).

Definition 6.2 Function T4 00 — R (A C ). defined by
1 ifweAd
IAWJ_{ 0, if wed’
iz called the indicator of set A.

Theorem 6.1 Let A < . Then 14 is a random variable if and only f A 2 F.

Proof. The validity of Theorem 1 follows from the following formula

W, if x=10,
Jw Tyw)<zy=¢ A, if 0=<x<1,
0, if 1<z

Definition 6.3 Random variable £ : 0 — R is called a diserete random variable,
if there ervists o sequence of patrwise disjoint events [ Ap)i=y and a sequence of real
numbers (15 \pew, such that:

1) (WEYkeN —=re R Ay e F);

2) UkenAr =}

3) Elw) =3 ey meda,(w), we
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40 G Pantsulaia Elements of Probability Theory

Definition 6.4 Random variable £ : {8 — R is called a simple diserete random
variable, if there exrists a finite sequence of pairwise disjoint events (Ap)<p<n, and
a fintte sequence of real numbers (ri)1<p<n. such that:

1) (WkN1<k<n—xpeR A e F);

2) UR_ Ay =Ll

3) &w) =Y ko 2ala, (W), we

Definition 6.5 A sequence of random wariables (£ )pcn is called inereasing if

("n)(vw)(n € Nyw € Q — Lilw) < Salw)).

The following theorem gives an interesting information about the structure of
non-negative random variables.

Theorem 6.2 For arbitrary non-negative random variable £ : {0 — R there
erists an inereasing sequence of simple discrete wariables (&;)pew, such that
(Fw)iw e 0 — f(w) = lim £,(w)).
Te— 00
Proof. Forarbitrary n £ N we define a simple discrete variable £, by the following

formula

n-2n

k-1
Enlw) = Z o I{y:pﬁﬁ:k—z}liﬁiy]-e:j—;%}twj +n - Ipyen sy zny (@)
k=1

Clearly,

("n)(n e N — &iw) £ &palw))
and

(Vw)(w e 1 — £(w) = f}i_ﬂgarfn(w‘”-
This ends the proof of theorem.

Theorem 6.3 For arbitrary random variable 1 — R there exists a sequence
of stimple discrete variables (np)ren , such that

(Fw)fw € 1 — plw) = lim 7a(w)).

Proof. For arbitrary random variable » : {2 — R we have the following repre-
sentation n =+ 4+ n~, where

nt(w) = max{n(w),0} and 5~ (w) = min{n(w),0}.

Using Theorem 6.2, for '+ and —#~ there exist increasing sequences of simple
discrete variables () Jeew and (7 Jeew , such that

(Fw)w € @ — lim g (w) =p*w), lim g w) = -9~ (w)).
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Random Variables 41

It is easy to show that (5, Jney = (5 — 05 Jnen is a sequence of simple discrete
random variables such that

(Fw)lw € @ — plw) = Lim ga(w)).

This ends the proof of theorem.

Tests

i.1. Let ¢ and 5 be discrete random variables for which the following represen-
tations

=Y rilaw), nw) = ymlp, W) (weQ)

keN meN
are valid. Then

1) for random variable £ 4+ i we have
aj L‘E +nlw) = Zﬁce'v' Eme'v' I+ meIAkI"lE (w) fw e nJ'«
) E4+nw)= E;,.:'.,. Emc'.,. Trmla,ng,, (W) (w e 0l);
2) for random variable £ = n we have
al (£-miw)= E;‘c‘.,rzmc‘.,r T + T:I'm\'IAk-ﬁBmEW w e (1),
3 if g:R—Risa 1118.9,sura,hle f‘LlllDtll}Il.. then g¢(£) is a random variable and
E’\I gl:.é ch‘y.grﬂjfﬂk(
b) g(& E;c‘.,. a- IkJIAk (L
4) the following formula i= valid
) sin(E)iw) =3 ey sin(ze ) Ly, (w),
b) sin(£)(w) =} 4oy aresin () La, (w).

6.2 Let (Ag)ren be a sequence of events and let £ be a random variable.
Then

1
| a) &N Uken Ax) = UL--:-‘»'E_I
b) £~ Uken Ak ) = Mken £ (A
2)
a) M (Nken Ak) = MkenE™1 (Ax)
b) EHMken Ar) = Uken € (Ak);
3)

a) (N 7N Ag) = 71D Ax),
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b) QY £7HAR) = €1 (An).

6.3.
If |£|is a random variable, then

1)
a) £ is a random variable;

b) it is possible that £ is not a random variable;
)

)

)

2y if £ is a random wariable, then

a) £+ is a random variahble;
b} it is possible that £t is not a random variable;

3) Let £ and n be random variables and let A be any event. If Biw) =
Elwly(w) +n(wilz(w) (we 2), then

a) © is a random variable,

b) It is possible that © is not a random variahble.
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Chapter 7

Function of random variable
distribution

Let (£}, F, P) be a probability space and let £: £ — E be a random variable.
Definition 7.1 Function Fe, defined by

(vz)(z € R — Fi(z) = P({w: £(w) < })),

where
R={-x} U R U {+x},

is ealled a distribution function of random variable £.
Here we consider some properties of distribution funetions.
Theorem 7.1 Fe(+oc) = lim,_. o Fe(z) =1

Proof. Let consider an increasing sequence of real numbers (rppey such that
limy ... 2 = 400, On the one hand, we have

{w:élw) < o} CSHw Ew) = mpqq} (K EN).

On the other hand, we have Upy{w @ Elw) < x} = ). Using the property of
continuity from below we get

Jim P(iw:{(w) = zi}) = Plren{w W) = 2}) = P(Q) =1,

e lime .y Fe(x) = 1.
Note that Fe(4o0) = P({w: £(w) < 4o0}) = P(2) = 1. Finally we get

o= 1 = .
Fe(+00) = lim Fi(r)=1
This ends the proof of theorem.
Theorem 7.2 Fe{—oo) =lime_._ o Fe(z) = 0.

43
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Froof. Note that
Fi(—o0) = P({w: &) < —oc}) = P(0) = 0.

Let consider a decreasing sequence of real numbers (r )pey such that limg_. . 73 =
—oa. It is easy to check the validity of the following conditions:
1) qw:€lw) = mpa} S {w i &w) = ot (R N),
2) Mien{w:&(w) <z} =0
Using the property of the continuity from ahove of P, we get

Jim P{w: £(w) = zx}) = P(Mrenv{w : £(w) < zx}) = P(0) =0,

e,
lim Fi(r) = F¢(—oc)=0.

T
This ends the proof of theorem.
Theorem 7.3 Distribution function Fe(x) is an increasing function.

Proof. Let, ry < rz. Let show the validity of the following non-strict inequality
Feixy) < Feixz). Indeed, using the validity of the following inclusion

{wig(w) € m1} C {w:é(w) < 22}
and Property 2.5 (ef. Chapter 2), we have
P({w: f(w) = m}) = P({w: §(w) = 221,

which is equivalent to condition Fi(xy) < Fe(zz).
This ends the proof of theorem.

Theorem 7.4 Distribution function Felx) is continuous from the right | i e.,
for arbitrary sequence of real numbers (xy)pey for which v, = (ke N)  and
limy_. .. 7 = x, the following condition

Jim Fe(zy) = Fe(a)

is fulfilled.
Proof. Without loss of generality, we can assume that (xy)cy 18 a decreasing
sequence. Then

{w:fw) < r} = Neen{w : £(w) < 21},
fwrflw) < mpyq ) CHw Ew) = 7} (ke N

Hence, using the property of the continuity from above of P, we obtain
Jim P({u: §(w) < 5}) = Plrgey {w: £(@) < ) = Pl{w: () < =),

which is equivalent to condition limy_. . Felrg) = Fe(z).
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This ends the proof of theorem.

Let £ be a discrete random variable, i.e., there exist an infinite family of pairwise
disjoint events (A )-x and an infinite family of real numbers (z )i, such that:

1) (k) (keN—=x,e R A, F):

2) UpenAr =12

3) §lw) =3 pen Thla, (W), w e il

Then the distribution function of £ is calculated by :

Fe(z)= ) P(4).

TpaT

Remark 7.1 Assume that in column A of the "Exeel” table we have entered
values rq,--- ,x, of simple discrete random variable £; Assume also that in col-
umn B of "Execel” table we have entered the corresponding probabilities py,-- - |, pa.
Then the statistical function PROB(xy @ 25 @ e v vz) caleulates the following
prohahility

Pllwrwe Q &y = § = ul)

For example, if the distribution of £ has the following form

Alf(w) =) | Bi= P{w : £lw) = 71 })
2 0,2
5 0,2
G 0,2
T 0.4

thentheprobabilitythatrandomuvariableg will obtain a wvalue in interval [3,6;5] is
caleulated with
PROB{A; : Ay; By - By 3,6:5) =0.4.

Note that to construct the distribution function of £ it is not necessary to know
what values obtain the random variable £ on the elements of £2. In this direction it
i= sufficient to know probabilities of possible values of £.

HEIE R
Plp |pz |- |7

where (FE)(k e N — pr = P(A4)).
Let consider some examples.
Example 7.1 (Poisson ! distribution ). We say that a discrete random variable

£:{1— R, defined by

fw)=) n-Iy,(w) (we),
nelN

! Poisson, Semion Denis i21.6.1781 - 25.4.1840)-French mathematician, physician, the mem-
ber of Paris Academy of Seiences (1812), the honourable member of Petersburg Academy of Seci-
ences [ 1526).
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generates a Poisson distribution with parameter A (A = 0) if the following condition
ki

PA) =2 (ne )

7!

holds.i.e.,

AT A
P({w:é[w,‘l:n}jzﬁe AneN).

Poisson distribution function F' (2, A) with parameter A is defined by the following
formula

Remark 7.2 POISSOMN(k; A; 0) ealeulates the probability that the Poisson ran-
dom variable with parameter A will get value k. For example, POISSON{0:0,2;0) =
0, 818730753.

Remark 7.3 POISSOMN(E; A; 1) ecaleulates the probability that the Poisson
random variable with parameter A will get an integer value in interval [0;k]. For
example,

POISSON{2;0,2:1) = 0, 9985851519,

Example 7.2 (The geometric distribution ). We say that a diserete random

variable £ : {1 — R, defined by
Ew) = n La,(w) (weQ),
nelN
generates the geometrie distribution with parameter g (0 < g < 1) if the condition
P(4n)=(1-q)g" " (neN)

holds, ie.,

Pl{w:fw)=n})=(1-q)" " (neN).

The geometric distribution with parameter g is defined by the following formmula

Fz)=) (1—-q)¢" ' (< R).

neT

Example 7.3 (Leibniz ? distribution). We say that a discrete random variable
£: 0 — R, defined by

Ew) = n-La,(w) (weR),
neN

2 Leibniz, Gottfried Wilhelm (1.7.1646, -14.11.1716)-German mathematician, the member
of London Royal Society  (1673), the member of Paris Academy of Sciences (1700
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Function of random variable distribution 47

generates the Leibniz distribution if the condition

1

|
Pdn) n-(n+1)

(ne N)

holds, ie.
1

P({w : {w)=n}) = ntD)

(ne N).

The Leibniz distribution function is caleulated by the following formula:

1
F@ =) oms =

T

_ { 0, it »<1
l— g 2210
where [z] denotes an integer part of x.

Example 7.4 (hypergeometric distribution ). A simple discrete random vari-
able

i
Ew) =) kW) weR)
k=1
is called distributed by hvpergeometric law with parameters (r, a, A) if
Ce-Cie

cn

A

P(A;J: I:;f=|]..1., :-ﬂ':"-

where 0<a<A4, 1<n<A
The hypergeometric distribution with parameters (n.a,A) s denoted hy

Fipaay(z) and is defined by
(k. Cm.—ﬁc
Y = a A—a .
Fn:ﬂ:Al:_'r:-pa 3::1 CE

Remark 7.4 HYPERGEOMDIST (k;n;a; 4) caleulates the value

Ck o cnk

L] A—n

i
For example, HY PERGEOMDIST(1; 4; 20; 30) = 0, D8T575.

Example 7.5 (binomial distribution ). A simple discrete random variable

Ew) =) kW) wen)
k=1
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is called distributed by binomial law with parameter (n,p) if

P(Ay) =G -p*(1 —p) 7,

where O<p<1, D<k<n,ie,
P({w: w) = k) =CF - pF1—pi™.

The binomial distribution with parameter (n,p) is denoted by F,(z,p) and is
defined by

Fu(z,p) = Ci-pF(1—p)" %
k< r

Remark 7.5 BINOMDIST | k; n; p; 0) caleulates the value
Chpt(1—py .

For example, BINOMDIST(3;10;0,5;0) = 0, 1171875,
BINOMDIST(%;n;p; 1) caleulates the sum

I
> Gl —p)".
i=0

For example, BINOMDIST(3; 10;0,5;1) = 0, 171875,

Remark 7.6 The random wvariable distributed by the binomial law with pa-
rameter (1,p) is called also a random variable distributed by the Bernoulli” law with
parameter p. It can be proved that the random variable distributed by the Bino-
mial law with parameter (n,p) can be presented as a sum of n independent random
variables each of them is distributed by the Bernoulli law with parameter p.

Definition 7.2 Random variable ¢ : @ — R is called absolutely continnous *

if there exists a non-negative function fi : R — R such that
i
("-."L“:I(I = R — Fg(rj = j- fE(I:IdeI..
— &0

where Rt = [0, 4+=0].
Function fe¢(z) (z € R) is called a density function of random variable £.

Theorem 7.5 Let fe : B — R be a density function of random variable £ :
11— R. Then

+ac
felr)dr =1.
Proof, Sinee limp .y Fi(L) =1, we have limp_.4. f_Lm felzydz = 1. This
relation means the validity of the following equality j'_":‘ Je(zjdr =1.

*Note that the density function of the absolutely continuous random variable is defined exactly
until null sets (in the Lebesgue sense) of B We recall the reader that X < R is null-sst(in
Lebesgue sense) if for arbitrary € = 0 there exists sequence ({]Jaw, be[lecy of open intervals such
that X © Upzprlay. by and EkENI:bk — g = €
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This ends the proof of theorem.

Theorem 7.6 Let Fy be a distribution function of an absolutely continuous
random variable £. Then for arbitrary real numbers r and y (xr < y) we have

P({w: 2 < éw) < y}) = Fe(y) - Fe(z),

If £ is abeolutely continuous random variable and f; is its density funetion, then

Pz < ¢@) <)) = [ fi)ds.
Proof.
Pl{w: o < £w) < p)) = P({w: @) < 3} \ {w: @) < 7}) =
= P({w: ) < ) - P({w : £w) < 2}) = Fe(y) - Fa(2).
If Fe(t)= [, fe(s)ds, then

F&(yll—Fs(rJ=fy fela)ds — ’ stSJdS=fyfeli5)d5~

This ends the proof of theorem.

Remark 7.7 If f: and F: are the density function and the distribution
funections respectively, then almost everywhere on R we have

EEFE[T:I .

dr

felz),

ie., hj{r:r < R, %? = f:(z) and %ﬁi} does not exist} =0, where {; denotes
one-dimensional Lebesgue measure on K.

Example 7.6 (Normal distribution). Ahsclutely continnous random variable
£:01 — R is ealled normally distributed with parameters (m,o%) (m < R, o = 0) if

1 |:=—171'|2
clr) = e 2  (x &= R:I
fel(=) ' 2me t

The density funetion and the distribution function of the normally distributed ran-
dom variable with parameters (m, o%) are denoted by @, ,2, and & 2, respec-

{mer (mer
tively, i.e.,

1 (m—m]E
] )= g 2 (re R
Dm0 (] '.,."IFQ_TI'J |: )

® =L [ Sk ien
aixr) = e 207 af jt e H).
{1, :II:. ! ‘-,-""ﬁﬂ' /: - (
When m = 0 and o = 1, they respectively are denoted as ¢ = ¢y and & =
P01y @ and & are called the density function and the distribution function of the
standard normally distributed random variable respectively.
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Remark 7.8 NWORMDIST|2;m; 7;0) caleulates the function

b o) = — e~ SR
TrlI= [ e
e '.,-""ﬁﬂ'

For example, NORMDIST(0; 0; 1;0) = 0, 3080428,
NORMDIST|z;m; ;1) caleulates the integral

il ) 1 T _em
) |:_:£_. = f e Qe ’
e v”ﬁa —

For example, NORMDIST(0;0;1;1) = 0,5.
Example 7.6 (The uniform distribution). Absolutely contimous random vari-
able £ : {1 — R is called uniformly distributed on the interval [a,b] (a < b) if
1 -~ .
| 5 iz e falh];
f‘f':”_{ 0. if ¢ [ab].
Distribution function F: of the random variable uniformly distributed on [a.b]

is defined by
0, if r<a

Fe(z)=q 3= i ze]ab];
1, if ==bh

Example 7.7 (Canchy ? distribution ). We say that an absolutely continuous
random variable £ : {1 — R is distributed by the Cauch law, if

1
felz) = -

Its distribution function is defined by

. 1 1 1
& = _ = — — 1'| [ .
Eelz) j:m T a‘zjdr 5 ﬂ_arﬁ‘g(r, (r e R)

Example 7.8 (Exponential distribution ). Absolutely continuous random vari-
able £:{} — R is distributed by the exponential law, if

D O A |

fsirj={ 0, Cif z <O
Its distribution function F is defined by

_dr - _—
Fg[rjz{l_e , i =0

0, if r<0.

Y Cauchy, Augustin Louis (21.8.1780, - 23.5.1857) -French mathematician, the member of Paris
Academy of Seiences (1816), the honourable member of Petersburg Academy of Seiences(1831).
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Remark 7.9 EXPONDIST(x; \;0) caleulates value Ae=** for > 0 and
A = 0. For example, EXPONDIST(4;3;0) = 1. 84326.

EXPONDIST(xz: A;1) caleulates value 1—e=** for = > 0 and A = 0. For example,
EXPONDIST(4:3;1) = 0,999993856.

Example 7.9 (Singular distribution). Let consider closed interval [0,1]
and let define a sequence of functions constructed by G.Cantor °.

Let divide interval [0,1] into three equal parts and define funetion Fy hy

7 if zelg 5k
Fiiz)=4¢ 0, if z =0y
1, if »=1.

We contimne its values on other points of [0,1] by linear interpolation.
Further, let consider the division of intervals [0,1] and [3,1] into three equal
parts and define Fs hy

%, if © :‘]%.%[,

E, if = E]E,EL
Eiz)= I if = E]E, g[:

0, if z=10

1

—
=,
2]
I
[

i

Analogously, we continue the values of Fy on other points of [0,1] by linear
interpolation.

If we shall continue this process, then we shall get a sequence of functions
(Fi)nen , which tends uniformly to concrete continunous function F' on [0,1] |
the increase points ® of which is null-set in the Lebesgue sense. Indeed, we get that
the Lebesgue measure of the union of intervals

12 12 78
330 Jg-gk Jggl

on which function F' is constant, is
2

()" =1
3

F' is called a Cantor funetion.

Let consider one construction of the random variable, whose distribution funetion
coincides with Cantor funetion F'.

We set

Lﬂ'--}:'-p:' = L[Drl]:«’[gl:[ﬂ'-l]:'rbl:'*

Let define a sequence of functions

¥ Cantor, George (19.2.(3.3).1845 -6.1.1918 )-German mathematician, professor of Gales Uni-
versity (1879-1913). He had proved that a real numbers axis is not countable.
¥ is called a point of increment for function F if Fiz+¢) — F(x — €) = 0 for arbitrary € = 0
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(EE';T IneN, 1<k<n, & keaN+1 = (S )icr

by the following formulas

1

fé (w)= 51{% (w), (we ),
1

‘Ej—twj = EI{%HWL I:.u"l = ﬂJ*
1

fg (w)= Ef{g}ﬂwh (we ),
1

Cilw) = Zln(w), (wetd),

1 _
Eg(w} = Ef{g}[u’:"- lw € nJ'«

1 _
(f%[wj = EI{%}[W], (w e i),

1
ff%ﬁh—'J = EI{%}KWL (w e ),

and =0 on.
We define £-,40 © 8 — R by the following formula

‘fﬂ-'uﬂtw(w:'= Z ‘f‘.:(“”

il i<w

It is easy to show that the distribution funetion generated by £agntor coincides
with Cantor funection F'.

Definition 7.3. 4 continuous distribution funetion, whose points of the inere-
ment have a Lebesgue measure zero, is called singular. The corresponding mndom
variable is also called singular.

Theorem 7.7 Arbitrary distribution function F admits the following represen-
tation
Fiz)=p1 - Fi{z)+ pz - Fo(z) + pa - Fa(z) (z € R),
where By, F,, F5 are distribution functions generated by a discrete, an absolutely
continuwous and a singular random variables, respectively and p, p2, pa are such
non-negative real numbers that

mtp+pa=1.

Theorem 7.8 Let Fy be a distribution function of £ and a =0, be R. Then
the distribution function of n=af + b is calculated by

r—h —

) (z e R).

Fy(x) = F
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FProof. Note, that

r—h r—h

Fy(z) = P{{w:af(w) + b= x}) = P{{w : {w) = H = Fel

@

Tests

7.1. The distribution law of random variable £(w) = ELI Tl (w) (we ) is
given by the following table

£]-1]o0 |4 |5
Plo.2[0.3[0.1]0.4

Then
1) Fi(—3) is equal to

a) 0,2, b)0,3,¢)0,1,d)0;
2) Fi(—1) is equal to

a)0,2,b)0,3,¢) 0,1, d) 0;
3) Fe(—0,3) is equal to

a) 0,2, b)0,3,¢)0,1,d)0;
4) Fi(4) is equal to

a) 0,6, b1 0.4, e)1,d)0,8;
5) Fe(6) is equal to

a) 0,6,b) 0,4, ¢)1,d) 0,8
7.2. The distribution function of £ is defined by

i, x <
Fe(x)=4 bz, 0<z<1;
e, x> 1.

Then
aja=1b=0c=0bja=0b=1,c=1;
cla=0b=0e=1; dja=1b=1,e=0;
7.3.The probahility that event A will oeeur in partial experiment is equal to 0,3,
Let £ be the number of experiments in the three independent experiments, when
the event A oceurred. Then the distribution of £ is given by the following table

a)

£]0 1 2 3

P 0,343 [ 0,441 | 0,180 | 0,027 | °
b)

£]0 1 2 3

P [ 0,343 | 0,441 | 0,179 | 0,087
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7.4. A shot gets 5 points if he strucks a target and loses 2 points in other
case. The probability that the shot strucks a target is equal to 0.5, The law of
distribution of collected points £ in 4 shots is given by the following table

a)

£ | -8 -1 il 13 20
P | 0,0625 (0,25 | 0,375 | 0,25 | 0,0625

£l -8 -1 i 13 20
P | 0,0625 | 0,225 | 0,375 | 0,225 | 0,0625

7.5. The complect of 10 details contains 8 non-standard details. We accidentally
choose 2 details. Then the law of distribution of number £ of standard details in
our probability sampling is given by the following table

a)
£ o 2
b)
£]o [1 [2
Pleglwl| 5

7.6. The probability that the price of goods will increase or decrease by 1 lari
during one unit of time is equal to 0.5 and 0.5, respectively. An initial price of
goods is 10 lari. Then the distribution law of price £ after 4 unites of time is given
by the following table

a)

£ |6 & 10 12 14
P | 0,0625 | 0,25 | 0,375 | 0,25 | 0,0625

£l 6 & 10 12 14
F | 0,065 0,25 | 0,375 | 0,25 | 0,065

-

7.7. A particle is placed at the origin of the real axis. The probabilities of
shifting to the right or to the left along the real axis during one unit of time are
equal(=0,5). The distribution law of states £ of the particle after 4 unit of time is
given by the following table

a)

£ -4 2 [0 2 1
P [0,0625 | 0,25 | 0,375 | 0,25 | 0,0625 |
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b)

£ 14 —2 |0 2 1
P | 0,0625 | 0,245 | 0,385 | 0,245 | 0,0625

7.8 Let £ be a Poisson random wvariable with parameter A = 1. Then the
probability that
1) £ will obtain a value in the interval [2,5; 5,5] is equal to
a) 0,306760, b) 0,13455, ¢) 0,11213, d) 0,28111;
2) 3£ + 4 will obtain a value in the interval [6,5; 7,5] is equal to
a) 0,367879, b) 0,13804, ¢) 0,13121, d) 0,28991.
7.9. Let £ be a random variable uniformly distributed on [3, 10]. Then
1) Fi(4) is equal to
a) =, b) £, ¢) &, d) 1
2) the probability that £ will obtain a value in the interval [2,5; 5,5] is equal to
a) 2.b) £, ¢) 5. d) 0,5
3) the probability that 5¢ + 5 will obtain a value in the interval [5;10] is equal

to
a) 0, b) 1,e) 0,5, d) 0,8

7.10. Let £ be an exponential random variable with parameter A(A = 0).

1) If the probability that £ will obtain a value in the interval [0, a] is equal to
2, then

ajla'r,:]%@:'—,hj a=l—“§ﬂ,cja=l“5 ,d:l-rL:]%@—;

2)The probability that 3¢ — 4 will obtain a value in the interval [-5:5] is equal

to

a) l—e ™ h)l—e ¥ o)1 —e % d)1—e 54
7.11. Let £ be a standard normal random variable.
1) If the probahility that £ will obtain a value in the interval [—a, a] is equal to
0,99, then
ala=2,37,ha=257,¢c)a=277.d) a=29T;
2) The probability that 3£ + 8 will obtain a value in the interval (—5.5) is equal
to

a) 0,8413, b) 0,7413, ¢) 0,6413, d) 0,5413.
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Chapter 8

Mathematical expectation and
mathematical variance

Let (£2,.F, P) be a probability space and £ be a simple diserete random wvariable,
e,

™
(Fw)(w e 0 — &(w) =3 my - Ly, (W),
k=1

where », € R (1 <k <n) and (Ag);<p<, is the complete system of representatives.

Definition 8.1 A mathematical expectation of the simple random variable £
is denoted by M £ and is defined by

N
ME="m - P(Ay).
k=1
Remark 8.1 Assume that in column A of "Execel” table we have entered values
ry,- -, r, of simple discrete random variable £; Assume also that in column B
of "Excel” table we have entered the corresponding probabilities py.--- .p,. Then
the statistical function SUMPRODUCT (21 @ =, m : pe) caleulates mathematical
expectation of ME.
For example, if the distribution of £ has the following form

Alf(w) =mx1) | B(= P({w: &(w) = = })

2 0,2

5 0,2 ,
i 0,2

7 0,4

then M& =PROB(A; : Ay By By ) =5, 4.

Assume that 1 be an arbitrary random variable. Following Theorem 3{cf. 56),
there exists a sequence (1, lhen of simple random variables such that

(Fwlw € Q — plw) = lim g,(w)).
Te— 2

5T
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Definition 8.2 If there exists a finite limit lim, ... M #,, then this limit is
called a mathematical expectation of n and is denoted by My (or [, n(w)dP{w)).

It can be proved that if there exists a finite limit lim,_... Mn,. then this limit is
same for arbitrary sequence of simple random variables tending to 1, which means
a correctness of Definition 2.

Agreement. In the sequel we consider such a class of random wvariables each
element & of which satisfy the conditions: M(£) < o0 and M{£?) < cc.

Theorem 8.1 If f: is a density function of an absolutely continuous random
variable, then

+oa
Mg:f 2 fi(z)de.

Definition 8.3 Value M(£— ME)? is called mathematical variance of £ and is
denoted by DE.

Definition 8.4 Value /DE is called a mean absolute deviation and is denoted
by a(£).

Let consider some properties of mathematical expectation and mathematical
variance of random variables.

Theorem 8.2 Let Slw)=c (w e}, ¢ £ A). Then M£ =c.

Proof. £(w) = ¢-Iplw). Following the definition of the expectation of the
simple discrete random variable, we have

Mt =¢ . P(2)=-c.

Theorem 8.3 M(£+n) = ME+ Mn, (ie., mathematical expectation of the sum
af two random variables is equal to the sum of expectations of corresponding mandom
variables ).

Proof. Using the approximation property of a random variable by a sequence
of simple diserete random variables and by the definition of the expectation of a
random wvariable, it is sufficient to prove this theorem in the case of two simple

discrete random variables. Now assume that £ and n be simple random variables,
ie. .
Ew) =) zr Law), AxNAm =0, 1<k <m<p,
k=1
W A=, m e R, kom,pe N,

a
nw) =3y I, (w), BuN By =0, 1<k <m=q,
n=1

U'-'I

n=1

EB,=% y,e R kmqgeN,

58



Mathematical expectation and mathematical variance 50

MNote that g
(£ +n) )=eri+yn, La,np,(w) (w € 1),

k=1n=1
It follows

r 9 r g
ZZ o+ Yn)  Lagrma (@) =) D (3 + ) - P(4 N By)

P

ZI;_ZQ:P Ar N By + Zq:ynipﬂﬂkﬁﬁﬂj
n=1 = k=1

k=1 n=1
q
= Z miP(Ag) + Y uaP(Ba) = ME+ M.
k=1 n=1
The theorem is proved.
Definition 8.5 Two simple diserete random variables £ and n are called inde-
pendent, if
P({w: {(w) =z, nw)=w}) = Pllw :{w) =z }) - P{{w: nlw) =ya}),

where 1 <k <p, 1 <n<qg.
Definition 8.6 Two random wariables £ and v are called independent if
P({w: &w) < 2, nw) < y}) = Pw:€W) < z}) - Pw: n(w) < y}),
where =, y € K.
Remark 8.1 The definitions 5 and 6 are equivalent for simple diserete random

variables .

Theorem 8.4 Let £ and n be independent random variables. Then there exist
two sequences (Eplpeny and (1 nzy of simple discrete mndom variables such that

1) &, and n, are independent forn e N

2) (& m)w) =limp o Sa(w) - Talw) (w e ).
Theorem 8.5 If£ and n are independent simple discrete random variables, then

M(g-n) = M - M,

i.e., mathematical expectation of the product of two independent simple discrete
random variables is equal to the product of expectations of corresponding simple
random variables.

Proof. Note that

Emlw ZZ (g Yn) Tapnp, (W) (we2).

k=1 n=1
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It follows

Poq Poq
Mg )= M(Z z Tk Yo dagnB,) = Zz Tk - Yo PlAR M B ) =

bh=1n=I1 h=1mn=1

P q r g
=3 m - wP(Ar) - P(Ba) = miP{Ar) - Y yaP(Ba) = ME- My,
k=1 n=1

k=1n=1
This ends the proof of theorem .
Using Theorems 84 and 8.5, we get the validity of the following theorem.

Theorem 8.6 If £ and i are independent random variables, then
M{&-g)=Mc-Mn,
i.e., mathematical expectation of the product of two random independent variables

is equal to the product of erpectations of the corresponding variables.

Proof. If £ and n are two independent random variables then using Theorem
4. there erists a sequence of simple independent random wariables (£, ),-n and
(MJney such that

1) &, and n, are independent forn e N;

2) (€ mw) = limp e Enlw) - Malw) (we L2).
By using Definition 5 and the result of Theorem 5, we get

Mig-n)= lim M(&, -n,) = lim Mg, - Mn, =

Definition 8.7 A finite family of random variables £, --- £, is called indepen-
dent if

P({w: &(w) <z, Gnlw) < 20} = [] PUw : &ulw) < 24 })
k=1

for every (Ti)i<k<n € R", where R= RU{+oc} U {—nc).
Definition 8.8 A sequence of random variables (£, )nen  is colled independent
if family (Ex1<k<n 18 independent for arbitrary ne N.

Remark 8.2 An analogy of Theorem 8.6 iz walid for arbitmary finite family of
random variables, i.e., if (&x)1<p<n 15 a family of independent random variables,

then N N
M[H &)= H Mé&,.
le=1 k=1

Theorem 8.7 If e € R, then M(cf) = eME, i.e., constant ¢ goes out from the
symbal of mathematical expectation.
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Proof. Note that a constant random variable ¢ and an arbitrary random vari-
ables are independent. Following Theorem 8.6, we have

Mic-£) = Me-Mé¢ = eME.

Theorem 8.8 (Cauchy-Buniakovski Yinequality ). For arbitrary random wari-
ables £ and n the following inequality

M€ -m)| < V/ME /M2

holds.
Proof. Let consider value M(& + xn)% . Clearly, on the one hand, we have
M(£ + xn)? = 0 for arbitrary x € R. Hence, the following expression

M{é+on)f =M+ 2ME -y) 24+ My - 2*

can be considered as a non-negative gquadratic polynomial. Henece, its determinant
must be non-positive, i.e.,

(2M (£ )% —4Mn® - ME <0,
which is equivalent to the condition
IM(& - m)| < VME - /M2,
This ends the proof of theorem.
Theorem 8.9 The following formula for ealeulation of variance DE
Dé = M&* — (M£)®

is valid for arbitrary random variable £.
Proof. By the definition of mathematical variance of £, we have

Dé = M(& — M£)=

Using the properties of mathematical expectation M & we have
DE = M(& - MEY? = M{£2 —26ME + (ME)F) =
=M & - M(2EME) + M((M£)?) =
=M& —2MEME + (ME) = M2 — (Mg)=
This ends the proof of theorem.
Theorem 8.10 For arbitrary random variable £ the following equality
D= ﬂi}%ﬂpﬂé —a)?

'Buniakovski, Victor [4(16).12.1804 - 30,11 {12.12). 1889] -Russian mathematician, Academi-
cian of Petersburg Academy of Sciences (1830)).
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holds.

Proof. Let calenlate o minimum value of function M(£—a)® . Clearly,
M{£—a)* = M (& — 2aé +a*) = M&* — 2Méa+ a*,

i.e.,, M{£—a)® isa quadratic polynomial with respect to a. Hence, point amin is
defined by
dM (£ —a)*
It follows, am, = ME, i.e.,
meill?u"pﬂ(f —a)P =M{£— apn)® = M(£ - M£)P = DE.

This ends the proof of theorem.

Theorem 8.11 For arbitrary random variable £ the following conditions

1) D¢ =0,

2)DE=0= (Jej(fee R— P{{w: &(w)=¢})=1)

are fulfilled.

Proof. Since DE = M(£— Mg and (£ — M£)? = 0, we easily deduce the
validity of part 1).

Let us prove part 2).

Let P({w:&w)=c}) =1, then M¢ = ¢ and M&? = &*. Following Theorem 9
we get DE = Me? — (Méy¥ =& — > = 0. Now, if DE =0, then M(£ — M£)2 =0,
e, P({w: £(w) = MEV) = 1. Henee, it is sufficient to eonsider e = ME.

This ends the proof of Theorem.

Theorem 8.12 Let ¢ £ R and £ be an arbitrary random wariable. Then :
1) Dict) =ec*DE,
2) Die+ &)= DE.

Proof. Following Theorem 8.7 and the definition of the mathematical expee-
tation, we get

D(ct) = Mict — M(e£))? = M (et — eME£)? = M{(2(& — M&)?) =

= M (£ — MEY = #DE.

This ends the proof of the part 1).
By definition of mathematical variance of £+ o, we get

Die+ &) =M(le+£&) —Mle+ &) =Mie+&—Me— M&) =
=M(c+&—e— MEP? = M(£ — M£)? = De.
This ends the proof of the part 2) and theorem is proved.

Theorem 8.13 Let £ and 5 be independent random wvariables. Then

D¢ +n) = Dé + Dy
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proof. Note that random variables £ — ME and 5 — My are independent. Hence,
we get

D& +m) = M((&+n) — M(E+m)* = M((& - ME&) +(n— Mn))* =
= M((£ — M&P +2(6 — ME&)(n— Mn) + (n— Mn)*) =
= M{& - MEZ42M (6 —ME)ng—Mn))+ M(np— Mn)® =
=DE+2M(E—MEM(n—Mn) +Dn=
=DE+2(ME - M(ME)(Myg—M{(Mn))+ D=
=DE4+2(ME—MEMn— Mn) + Dy = Dé + Dy
This ends the proof of theorem.

Remark 8.3 Note that an analogy of Theorem 13 is valid for arbitrary finite
family (Sxh=p=n of independent random variables, i.e., the following equality

DY & =) D&
-1 =

haolds.
We have the following

Theorem 8.14 Let Fe be a distribution function of the absolutely continuous

random wariable. Then the following formula for caleulation of mathematical wari-
ance

+oe
D¢= [ @-MePf@s

is valid.
Let consider some examples for caleulation of mathematical expectations and
mathematical varianeces.

Example 8.1 (Poisson distribution). Let

)= n Liw) (we)

nelN

be a diserete random wvariable distributed by Poisson law with parameter A (A = 0),

l.E.,
L3

P(A,) = P{{w : &(w)=n)) = %e-’* (neN).

Then - _
Mg = in-ﬁe_l = in Er:*_Jt =
’ —~ nl —~ nl '

:Ain-}igle_h:}le_hz E:J“
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On the other hand, we have

e AR = A
ATES 2 A _ 2 - _
Me —f;n e —ﬂgn et =
- — (n—1) Aﬂ- g
= 'n_-
n=1 [?‘1—1 ;
R "”mw
=A
+ﬂz=;(n—1j|' — m!

+AZ%E—*=AE+A=M1+A;.
Following Theorem 8.9, w;g_eut
DE=M£ —(MEPF =M1+ M- A=\
Example 2 (Geometrie distribution ). Let

fw)= Y n L) Wen)
neN
be a diserete random wariable distributed by the geometrie law with parameter g,

where (0< g <1), ie.,

P(An) = P({w: é(w)=n}) = (1 - g)g" " (neN),

Then
o - a0 o o o 1 )
=Y nll-g ' =01-q > n" " =01-90 ) =(1-aG=) =
=1 n=1 n=

11
(1-qPF 1-gq

=il-q):

On the other hand, we have

o

Mg = Z Fll—g)d ' =1—q)- ) (k-kg* ) =(1—gq)- ) (k¢*) =
k=1

k=1 k=1

=(1-q) Z L) =) [k + Y ket =
.ﬂ.=1 .|1n.'=1 .ﬁ.‘=1
2q 1 2q 1

-olg=gr+a—gd “ar T o
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Henee,

2q + 1 1 _ q
(1—g)? (1—q) (1—g* (1—-g®

D¢ = M — (Mg =

Example 8.3 ( Leibniz® distribution). Let

be a discrete random variable distributed by the Leibniz law. i.e.,

1

Then

Zﬂ"n.(n+lj :Z; (n+1) - e

n=1 n=

Henece, mathematical expectation M£& and mathematical variance DE are not finite.

Example 8.4 (Binomial distribution ). Let
Ew) =Y k(W) (we)
Fe=0

be a simple random variable distributed by the Binomial law with parameters (n, p),
Le.,

Plthj.:l =PI:{LL.-$|:HJJ'| =k‘}:|= Cfipﬁ‘il_ﬁjn_l..
where D < p<1 and 0<k<n.

Then
- ke n—k = n! ) ek
*ﬂ*if‘f:zk'cfi'!f'(l—i’-"‘:' L=Zk'm'¥‘j‘ﬂ1—?:‘ k=
Pt - ! )!
o (-1 eagy o yin—l—(k-1) _
=m0y F iy ¥ AP -
k=1
n—1
(n—1)! 1 (n—1)— (k1)
— . _ pyir=lj—(k=1) _
" Fk_zlﬂ k= Dl(n—k)! P -p)

-1
=n-pﬂz S L
e sliin—1)— a)! ’

? Leibniz, Gottfried Wilhelm (1.7.1646 - 14.11.1716)-German mathematician, the member
of London Roval Society  (1673), the member of Paris Academy of Sciences (1700).
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66 G.Pantsulaia Elements of Probability Theory

n—1

=n-pY Coy p°(1-p" " =n.p
==l

Remark 8.4 Let 5 be a random wvariable distributed by the Bernoulli law with
parameter p i.e.,
HEWJ =0- IAD["'-:J +1 'IA1|LW:' [“-: = ﬂ:'-.

where Ay + A; = and
PlAg) = Pl{w i p(w) =0} =1—p, Pl4) =P{{w:nlw) =1} =p.
Then
Mn=0-P{{w:inw)=0}+1 - Pllw:nw)=1}=1-(1-pj+1-p=p.
On the other hand, we have
Pw:7(w)=0)=1-p, Plw: 7’ (w)=1})=p,
Hence,
Mnp*)=0-Plw 7w =0+1 -Plw:n*w)=1)=1-(1—-p)+1-p=p.

Finally we get

D(n) = My* — (Mn)* =p—p* = p(1 —p).
As simple discrete random variable £ distributed by Binomial law with parameter
(n.p) can be presented as a sum of n exemplars of independent simple discrete

random variahles distributed by Bernoulli law with parameter p, following Theorem
3, we get
i 1]
ME=M()_ &) =) Mé& =np.
k=1 k=1
Following Remark 2.3, we get

De=D(S &)=Y D&y = np(1 - p).

k=1 k=1

Example 8.5 (Normal distribution ). Let £: Q! — R be a normally distributed
random variable with parameter (m, o) (m € R, = 0), ie.,
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Mathematical expectation and mathematical variance fi7

]_ + oo |'1'..'—r11:|2 m +oo (::'—m'|2
= f (x—m)-e 22 dr+ f e 12 dr =
V2To S e VE2TT J e
1 +oo ]
= — / e ldr4m=m.
x-"'E'TI'J — o

Using the formula for caleulation of mathematical variance, we get

+ze +ee
De= [ @ompfeye= [ @ mPf@)is =
—o -0
+ oo 1 {e—m3? o 1 ]
= /. (r—m)? ——e" " =7 dr= /. PR Y,
- VATT - VATT
where z=x—m.
Setting f= 2, we get
z +oo 2 2
T _t [ S —
DiE=— t2e 1T ds = ——/ 21 = o2,
VAT S 1.%
hecanse

—a

Example 8.6 (Uniform distribution on [a;b]). Let £: — R be a random
variable uniformly distributed on [a.8] (a < b), Le.,

=, if r € [a,b]

ffm:{ 0. if ¢ [a.b]
Then

a” 2b_a) 2

FLY = = ] = . =
ME /:m zfelx)dr A T ﬁ—adr 2(:5—aj|

On the other hand, we have

+oo b 1 3 ¥ + ab+ a2
i\ 2: 2 = z, = E:'=
M¢ f_m 22 fe(2)dz f P gade = o, Sk

Following Theorem 8.9, we get

_at+ab+ ¥ af+2ab+ 0 (b—a)®

B VR W
Dg=Mg" — (M€) 3 1 12

Example 8.7 (Cauchy distribution j. Let £:{ — R be an absolutely contin-
ucus random variable distributed by the Cauchy law, ie.,

1
felz) = 129 (z € R).
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68 (.Pantsulaia Elements of Probability Theory

Note that the following indefinite integral

+o +e 1

does not exists. Hence, we deduce that there exists no a mathematical expectation
of the random variable distributed by the Cauchy law.

Example 8.8 ( Exponential distribution ). Let £:£ — R be an absolutely
contimons random variable distributed by the exponential law with parameter Ai.e.,

Ae=r= i w0
f‘f':TJ_{ 0, if x<o.

Then

+oa +oa
Mé= f rfe(z)dr = f rheMdr =

! T 11 1
=M=y g [ e da) =M (- fim Yo 5 =
11 1, 1_1
A= Pur bbby

Using analogous caleulations, we get

D¢ = f r? fe(z)de — (ME)* = A[ e M rdr — ==
e q

!
Az

2
A2

Example 8.9 (Singular distribution). Let consider random variable £ognt0n, de-
fined on [0, 1].
It is easy to show that

1 1
f Ecantor(y ) dy +/ Fix)dz =1,
0 i}

where F' denotes the Cantor function defined on [0, 1].
Hence,

1 1
Mécanton = fD Econtor()dy = 1 fn F(z)de.

Note that for set Az, obtained by counterclockwise rotation about point (%, %jl
on angle m of set Ay = {(z,y):x e [0,1],0 < y < F(x)}, we have:
H:l bzll;:kl ] ;lz] = D,
b) ba(Ay) = b2(Az),
¢) Ay UAz=[0.1] % [0,1].
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Hence, ba(fy) = ba(fs) = % It follows

1
M&:mm=l—f Flr)dr=1_by(A) =1 L= L
0 2 2

Now let caleulate D{£cgpn0r ). Note that wMg2_ . coincides with the volume
of the ohject, obtained by rotation of set Az about real axis 0Y , which is equal to
the difference of volumes of fisures, obtained by the rotation of sets

0.1] x [0,1]
and
[1 2] 12
3'3 9’9
about real axis 0} | respectively. Hence,

< 0.5)Ulga] < 05U [ 5] < 0.2 U

1..2 1
Mo =1-[5(3)" - @) +3(G) - )+

It follows that

3 1,.2,2 1,2 1,.2,.2 2
Dézﬂantw = ‘nl'f‘sfz_'-'uﬂtw - E*ﬂl'f‘sﬂ'untarzlg = E - [EE(EJ - [:EJ :I+ E”\EJ - [:E:J )+

Remark 8.5, (Physical sense of mathematical expectation and mathematical
variance ). We remind the reader that arbitrary random variable £ : {2 — R can
be considered as a special rule of dispersion of the unit mass of powder {1 on real
axis R, by means of which every particle w £ Q0 is placed on particle A € R with
coordinate £(w). Here naturally arises the following

Problem. What physical sense is put in M¢ and D¢, respectively 7

It is well known from the course of theoretical mechanics that if mass py is placed
at point ¢ € R for 1 <k <mnand Y p_,pr =1, then center z. of the whole

mass is caleulated by :
i
re=Y 4 pi
k=1

If the rule of dispersion of the unit mass of powder {1 on real axis R is a simple
discrete random variable given by the following tahle

Elm |z | |z
Pipo|pz | |al|’
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70 G.Pantsulaia Elements of Probability Theory

then M ¢ = x., which means that M ¢ is a center of the unite mass distributed hy
the law £ on real axis RH.

Note that the physical sense of M£ is same in the case of arbitrary random
variable £.

On the other hand. if £ is a simple discrete random variable, then

DE=) " (mx— ME) .
k=1

Note that value D¢ depends on values ((xp — M£&)%) cp<,. The latter relation
mesans that the particles of mass are concentrated nearer to its center ME as well a
mathematical variance [)(£) is near at zero. In particular, if =) = --- =2, = M,
then D& = 0.

Hence, mathematical variance DE can be considered as a characterization why
the particles of the unite mass of the powder are removed about its center M£.

As an example let consider random variables £ and &, defined by

G 1-1]1 2| 2|2
PII I [PIELZ
Clearly,
Mg =ME=0,
1 1
D$1—1-§+1-§—1,
1 1
D$2—4-§+4-§—4.

Note that, on the one hand, the centers of the particles of the unit mass of powder
11 dispersed by laws £ and £, respectively, coincide and are equall to zero, ie.,
Mg = Mg = 0. On the other hand, the particles of the unit mass of powder {2
dispersed by rule £ are more nearer to the center than the particles of the unit mass
of powder £ dispersed by rule &.

Remark 8.1. Let xp,-- .2, be the results of observation on the random
variable with finite mathematical expectation and with finite mathematical variance.
Then:

1) AVERAGE(z : ) calculates sum 157 =z,

2) VARP(z, : z,) calculates sum £ 577 (x; — %Z’;:l )7

3) VAR(z) : z,) caleulates sum 25377 ) (2 — 2 30 25)%

Tests

#.1. Distribution laws £ and 5 are given in the following tables

El-1]0 |1 |z 1|0 |-2
Plos|oz|o1]04]" Pl05(0,3]0,2
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Mathematical expectation and mathematical variance il

Then
1) M(3f — 4n) is equal to
a) 5,3, b) 54, ¢) 55 d) 56
2y DN3£ — 4n) is equal to
a)20,4,3, b)21,5, ) 22,6, d)23.7;

8.2, Distribution function F of the absclutely continuous random wvariable £
has the following form

0, ==10
Exz)={ 2% O<z<1
1, z=1

Then
1) M(3£—4) is equal to

ald, b)-=3. e 4, d)—4;
2) D{/18 — 4) is equal to

a)0,3, b)0,7, e 1, d)1,3

#.3. Let £, be a random variable normally distributed with parameters (3,25), £
he a random variable uniformly distributed in interval (18.20) and £; be a random
variable distributed by the Poisson law with parameter A = 5. Then

1) M1, + 28, + 3£5) is equal to

a)34, b)35 ¢) 36, d)a37

2yif £, &, & are independent random variables, then D(1£) + 26,4355+ 4) is

equal to
a) 254, b)26L, ¢ 271, d) 231

8.4. Distribution laws £ and n are given in the following tables

El-1 1 |2 n 12 [3 -1
Ploz|ol|o7|” Pl03|03]0.4
Then:
1) distribution law £ is given in the following table
a)
=3 | —2 [-1 |1 7 3 |4 6
P l0,06|0,34|004|0,08]003]0,03]|0,21]0,21
b)

-3 -2 [-1 |1 2 3 i G
P 0,05 0,35 | 0,03 |0,00|003]0,020,22]0,21

2}  distribution law £ + n is given in the following table
a)

E+n]—=2 |0 1 7 3 |4 5
P 0,08 | 0,04 | 0,34 | 0,06 | 0.03 | 0,24 | 0,21
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b)

0,06

0.02

0,25
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Chapter 9

Correlation Coefficient

Let (£2,0F, ) be a probability space, and let £ and » be such random variables
that 0 < DE < =~ and 0 < D < =,

Definition 9.1 Numerical value p(£,n). defined by

_ M(£ — ME&)(n — Mp)
plE.m) = N ;

is called a correlation coefficient between random values £ and 7.
Definition 9.2 Numerical value cov(£.n), defined by

MiE-—M&in-M
cow(£,m) = (€ wDéx’E%Ti‘ n)

is ealled a covariation coefficient between random values £ and 1.

Remark 9.1 Let (x, 1), -, (2, 1, ) be the results of ohservations on the ran-
dom vector (X.Y'), every component of which has a finite mathematical expectation
and a finite mathematical variance. Then:

1) CORREL(zy @ 2w ¢ yn ) caleulates the value p,, which is a good estimation
of correlation coefficient p( X, 1Y),

2) COVAR(x) @ »uiy1 ¢ yn) calenlates a value eovy (X,Y), which is a good
estimation of covariation coefficient covi{X, ¥ ).

Below in columns A and B we have entered the results of observations of random
vector (X.Y7), everv component of which has a finite mathematical expectation and
a finite mathematical variance.

A=) | Bi=wu})
T 2
11 5 ]
G G
T T
Then:
73

73



74 G.Pantsulaia Elements of Probahility Theory

1) ps=CORREL(AL : A4; B1 : B4)=-0,0605880;
2) covy( XN, Y)=COVAR{ALl: A4;B1: B4) = —0,25.

We have the following propositions

Theorem 9.1 Let, £ and n  be such mandom variables that 0 < DE <
oo and 0 < Dy < oo, Then |p(&.m) = 1.

FProof.
0 < D(— + — ) =M(— + — )
v DE VD vDE vDn
Hence, we get  [p(é, )| = 1.

=2+ 2p(£,m)-

Theorem 9.2 If £ and i are such independent random variables, that 0 <
D < ocand 0 < Dy < o0, then |p(g,n)| = 0.
Proof. From the independence of £ and 5 we get that random variables 5%*[{1
-
and ”—:-E%’l are also independent. By using Theorem 6(cf. 58) we deduce that

£ Mt M
p(&:m) =M[( Nai3 ) (n,m?—;n)] =

£ M¢ M
=M( N )-M(”v_m”) —0.

Example 9.1. Note here that the inverse result given in Theorem 9.2 is not
always valid, i. e., the existence of such non-independent random variables £ and 5
is possible that 0 < D¢ < o0, 0 < D < =0 and p(£,n7) = 0. Indeed, assume

(Q.F, P) = (0: 11, B([0:1]).y).
Let define random variables £ and » with the following formulas:
Sw) = 4T (@) 4 0 (@) = dpg (@) +Ogy (),

nw) =0T y(w) + 43 (@) +0pg 21(w) — 4z yy{w).

MNote that
ME=Mng=0, DE=Dn=28
and M (£ — ME)(n — Mn)
Mig—MEg)(n— My
11! = =

P&, 1) N

_Mé&n Mo _

&8 8

Now let show that £ and 5 are not independent. Indeed,

Plfw:¢ <3 n<3) =1
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3
, Plw:p <3} =7

PHw:£<3}) = T

= | L

It follows that

Plu:£<3n<3} )2 P{w:£<3))- Pl{w:n< 3)).

Theorem 9.3 If the conditions of Theorem 1 are fulfilled then |pl&.n) =1 if
and only if there exist real numbers a (a = 0) and b such that

Pl{w:nlw) = ag(w) +b}) = 1.

Froof.
Sufficient . Assume that
P({w: n(w) = af(w) + b}) = 1.
We set Mé = o and TE = 3. Then

—a af+b—acx—5b

£ .
1 =M . = ai IR
plEnl=M 3 ald signia)

Necessity., Assume that ‘p[f ,‘J‘]J‘ = 1. Let consider the case when p(g,n) =

1. Tt
e b (g _M¢ n— My
VIDE VD
Using the property of mathematical variance for concrete ¢ £ R, we get
E—ME n—Mny
Pl{w: - =ct)| =1
(1 JDE Dy )

) =21 pl&,m) =0.

Hence,

P(fw: €w) = ‘:E_E () — /DE( k| —c) +Me}) =1.

If p(&,n) = -1, we get
E—-MEg n—Mny
D +
( VDE VD

Analogously, using the property of mathematical variance, we deduce an exis-
tence of such d R that

E-M¢ n-Mn _ _
P({w: V05 S, =d}) =1,

) =201+ p(&m) = 0.

Le.,

JDE My
. i L = 1.
o)+ \fﬂg\_ 7+ d\/DE + wg}) 1

P({w CEw) = —
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76 G.Pantsulaia Elements of Probability Theory

Remark 9.2 The correlation coefficient is a quantity characterization of the
degree of the dependence between two random variables. It can be considered as
"cosine” of the angle between them. Indeed, since |p(,n)| < 1, there exists a
unique real number ¢ in interval [0, 7], that cos¢ = p(£,n). This number ¢ is
called an angle between random variables £ and 5 and is denoted with symbol
(£,m), le., (£,n) = arccos(p(f.n)). The following geometrical interpretations of
theorems 2 and 3 is interesting:

1) If £ and n are such independent variables that 0 < D¢ < oo and
0 < Dy < oo, then they are orthogonal | ie., (E‘,_;ﬂ = 3.

2) If ((fd,_?_jj is equal to 0 or w, then a random variable # is presented ( P-almost
everywhere) as a linear combination of random wvariable £ and constant random
variable.

Example 9.2 Let consider a transmission system of the signal. Let de
note a useful signal with £ As here we have hindrances, we receive signal
Nw) = af{w) + Alw), where a is a coefficient of the intensification , Afw) is
a hindrance ("white noise”). Assume that variables A and £ are independent,
Mé =a,Dé =1, MA =0, DA = ¢*. A correlation coefficient between ran-
dom variables £ and n is caleulated with

A — oo [
) =M((E—a). 252 ==
plE,n) (UE a) Vo2 t o2 ) VaZ f o2

If 7 issmaller than o and is close to 0, then p(£.n) will be close to 1 and following
Theorem 3, it is possible to restore £ with n.

Let consider other numerical characterizations of random variables.
Definition 9.2 A moment of order & (k € N) of the random variable £ is
defined with M¢* and is denoted with symbol oy, | i.e.,

o = ME* (ke N).

Definition 9.3 Value M(£—ME&)F (k€ N) is called a central moment of onder
k and is denoted with symbol g, | ie.,

= M(E - ME* (ke N).

Remark 9.2 Note that mathematical variance D¢ is the central moment of the
order twao.

Let £, - .& be a finite sequence of random variables.

Definition 9.4 Value

Mgt ghn
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is called a mired moment of order ky + - + ky, and is denoted with symbol
ﬂ'{;.i:...lj-“},:‘.ﬂu
ﬂll:kl."'.kn:l = ;nl'f(f'ii c s i“ i_kl\ Ce ,kﬂ_ = ‘ﬁ,'r:l‘

Definition 9.5 Value
M(& — M * - (& — M&y)k

is called a central moment of order &y + --- + k, and is denoted with symbol
By oo Jon)s BEey

Moy ) = M(EL — MENF - (£n — M&)™ (k1o k€ N).

Definition 9.64 skewness coefficient of the random variable £ is called a num-

ber %—E— and is denoted with symbol A, i.e.,

_ Ha

A_g —_— T e
i

Remark 9.3, Let xp, -- - ., 7, be the results of observations on the random variable
X. Then the statistical function KURT (2 : »,) gives estimation of the excess of £.
For example, KURT(—1; —3; —80; —80) = —5, 900143735,

Definition 9.7 An excess of the mandom wvariable £ is called a number £33 and
is denoted with symbol E., ie..

4
ET -“:_4 - 3
T
Remark 9.4. Let 1, -+ . x, be the results of observations on the random vari-

able X. Then the statistical function SKEW(x; : »,,) gives estimation of the excess
of £. For example, SKEW(1; —1;3; —3; 80; 80; —80) = —0, 17456105,
Definition 9.8 If Fe is a distribution function of £, then a median of random
variable £ is called a number -+ | for which the following condition is fulfilled
Fr-0)<3 , Fly+0) 23,
where Fe(y —0) and Fe(vy +0) denote the right and the left limits of function F
in point -y, respectively.

Remark 9.5 Let xy, - . x, be the values of the discrete random variable X
such that 1 < z2 < --- < 7. Then median is x4y, whenn=2k+1, andxy + 74413,
when n = 2k. The statistical function MEDIAN(x : x,) calculates the median of
£ For example, MEDIAN(G; 7;8;11) = 7,5 and MEDIAN(6;7;100) = 7.

Definition 9.9 4 mode of simple disevete random variable £ is called its such
possible meaning whose corresponding probability is maximal

Definition 9.10 A mode of absolutely continuous random variable £ is called
a point of the local marimum of the corresponding density function.
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Remark 9.6 Let . -« - | 2, be the results of observations on the random variable
X. Then the statistical function MODE(x; : 2, ) gives the estimation of the smallest
mode of £. For example, MODE(7;11;6;7;11;18;18) = 7.

Definition 9.11 A4 random variable is called wnimodular, if it has only one
mode. In other cases, the random variable is called polymodular.

Tests

9.1. Assume that (2, F, P) = ([0,1], B([0.1]), b1). Assume also that & and 5 are
defined with

The correlation coetheient p(£,n) is equal to
a) —0.2, b)-0,1, e} 0, d)0,L
0.2, The distribution law of the random variable £ is given in the table

E]-1]0 [-1
P|0.6|0.1]0.3

Then
1) M(£*) is equal to
a) —0,1, b) —0,2, ) —0,3, d) —0,4;
2) M(&— M£)! is equal to
a) 1,048, b)) 0,0481, ¢) 0,8481, d) 0,7481.
8.3, Let £ be a random variable normally distributed with parameters (0,1).
Then

1) gy is equal to

a) 1, b) 0, e)2k+1, d) 2k
2} py is equal to

a) 0, b} 1, ¢ 2, d) 3
3) median -y is equal to

a) 0. b) 1, ¢ 2, d) 3
4) mode is equal to

a) 0, b) 1, e 2 d 3
9.4, £ is a random variable uniformly distributed on (0, 4) . Then
1) piz i equal to

a) 6, b) 7, e & d)%
3) median 7 is equal to
a) 1, by 2, el 3, d) 4;
4) mode is equal to
a) 04, b 03, o 02, d) 01
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9.5. The distribution law of simple discrete random variable £ is given in the
following table

E]-1]2 |3
Plo3|0.4(0.3

Then
1) the median of £ is equal to
al 1, by 2, c) 3, d) 4
2} the mode of 7 is equal to
a) -1, b} 2, ¢ 3. d) 4

9.6. Distribution function Fy of absolutely continuous random variable ¢ is
defined with

0, = =10,
Fi(z)=4¢ 2%, 0<z<l,
1, =z=1.
Then
1) median 7 is equal to
a) M2, b) ¥E ¢ & d) L

2} the mode of £ is equal to
a) 1, by 2, ¢ 3 d4
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Chapter 10

Random Vector Distribution
Function

Let (2, F,F) be the probability space and let (£i)1<r<, be a finite family of
random variables.

Definition 10.1. Reflection (&, - ,&): 2 — R", defined with

(Fwiiw e 2 — (&, JGllw) = (Slw), - Ealw]]),
ig called m-dimensional random vector.,

Definition 10.2 Reflection Fe . ¢ : R* — R, defined with
EIFI(TI'- sy Te) )21y, T0) € R" — FEL---:E““TI'- oty In)) =

= Pl:.{“-" : ‘Ell:“;:l S PR ﬁ‘fﬂ-r-.u"l:l = rﬂ}]:'u

is called a joint distribution function of the n-dimensional random wvector
(Elr' o :-‘Eﬂ;l'

Definition 10.3 Random wector (&1.--- &) is called discrvete if every i-th
component £ is a discrete random variable for 1 <i < n.

Analogously we can define an absolutely eontinnous random vector.

The joint distribution funetion Fy, . . has the following properties:

1. lim pﬁi-----En“Th" ra =1
r—oafol 1<i<n '
2. lim Feo g (g, ) =00

mi— —mefOT 1isn
Here naturally arises a question what is the probahility that the 2-dimensional

random vector will obtain the value in the rectangular?
The following result is valid.

&1
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Theorem 10.1 The following formula
(TR T ()1 =k 22& e Ry e R my <oy by <yp —
P{{w : (&1.&2)(w) € [z ze[x[yivz[}) = Fey o (22, 42)) — Fey g (21, 12) 1+

+Fe, go((m1,10)) — Fyy gy ((22,0))
holds, where

[izz[=<[nivz={(zy)lm =z <22, =y <1}

Proof. Setting
Apapy = {w : (&1, &2)(w) €] —oosalx] —ocib[} (a e R,be R),
we get
{w (&, &) (w) glzyze> ]y ¥z} = (Azaws) \ Aizoan)) b Az am) \Aizya)-
Hence,
Piiw: (&1, &) (w) €]z ze[=un we[b) = PllAzy 00 \ Aizawn ) —
PllAqz, v\ Aeyan)) = (PlAgg ) — PlAzgeg)) — (PlAg, y0)—
P(Azy 41)) = PlA(zo30)) — P(A(zan)) — P(A(zy4m)) + PlAzy ) =

Féi.&ﬂ“Tm Yz)) — F&.&HTLBH) - F&i.ﬁﬂ”i"layz,":' + Fsi.szlilii"h yi))-

This ends the proof of theorem.

Assume that (z,y) € R®. If there exists double limit

g PUw:(§,.&)w) € [r — Axie + Az[x]y — Ay;y + Ay[})
ArAy—0 4hrhy '

then we say that joint distribution function F¢ ¢ of 2-dimensional random vector
(£1.&2) has the density function fe, ¢ (x,y) in point (z,y) which is equal to the
above-mentioned double limit.

We have the following proposition.

Theorem 10.2 If a function of two variables Fy, ¢, has the continuous partial
derivatives af the first and second orders in any neighborhood of the point (ra, yo).
then 2-dimensional random vector (&1, £2) has density function fz & (2o,%0) in point
(xa.yn), which can be calewlated with the following formula

O°Fe (2o, un) _ 8°Fey (20, o)

fEi:'EEl:.TU\yDJ = ﬁrﬂy ijar

Proof. Using Theorem 1, we get

P{{w: (&,&)(w) € [r — Aziz + Ax[x]y — Ayy + Ayl}) =
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= F$1.:‘E2|:|:TD + Az, Ya)) — szj,pfg (To+ Ar, o — Ay))—
Fe) gy ({0 — Az ya)) + Fiy gy (20 — Az yo — Ay)).

Without loss of generality, we can assume that points (rg — Ax, yo), (ro — Ar,yo +
Ay), (ro,yo — Ay), (zo, yo + Ay) belong to such neighborhood of point  (zq. w)
in which Fy, ¢, has continmous partial derivatives of the first and second orders,
respectively. Following Lagrange ! theorem, there exists #; €]0;1[ such that

[Feyeol(zo + Ar,wn)) — Fiy e ((zo + Ar, yo — Ay)l] -
[Feyeal(zo — Az y2)) — Fey go( (20 — Az, o — Ayl =
AF:,
=2Ar - %u«n — Az + 261 Az, yo — Ay).

Again using the Lagrange theorem, we deduce the existence of #z £]0;1[ such that

P{w: (&.&)(w) € [r — Azjz + Ax[x]y — Ay y+ Ay[}) =

82F
=4 Ar Ay—2LE (00 A 4+ 260,A1, ¥y — Ay + 26,).

fydx
Clearly,
L Plw: (6,&)@) € [ + Anlxly — Ay +[) _
Az, Ay—D 4ArAy
L LA Ay (50— Ax 4 201 A2,yo — Ay + 202)
~ AsAy—o 1A7Ay =
_ azpﬁi:éﬂ (2o, 0]
dydx )

The application of the well-known Schwarz 2 theorem ends the proof of theorem.

Example 10.1 2-dimensional random vector (£.£2) is called distributed by
Gaussian law, if its density function fg ¢, has the following form

1 _twi—ap)?  (za—ag®

e ﬂcrl‘j': ﬂn:r% LIIHTZ e RJ-.

fepgolm,ea) = o102

where ay,az € R, m > 0,02 = 0.
Here we present some theorems (without proofs).

Theorem 10.3 Let D € R? be some rvegion of R* and fe . be a density
funetion of 2-dimensional random veetor (£1, &), Then the following formula

Pl @)@ e D) = [ [ fuuo iy

! Lagrange, Joseph Louis i 25.1.1736 - 10.4.1813) - French mathematician, the member of
Paris Academy of Sciences (1772).

2 Schwarz, Karl Hermann Amandus (25.1.1843 — 30.11.1921) — German mathematician, the
member of Berlin Academy of Sciences {1803,
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holds.
Definition 10.4 A4 reflection g : R® — R is called measwmble, if the following
condition

[%T)(I ceR— {(Ilr“ : :-Iﬂ] :.glirl:-“ : :-Iﬂ] {I} = B(Rn”
holds. It is easy to show that g : R* — R is measurable if and only if when
(¥B)(B & B(R) — ¢7*(B) & B(R")),

where _t]'_ll[B]I :{(Ila'“ rrﬂj:girla‘“ :-Iﬂj = B]’

Theorem 10.4 Let [t tn be a density function of random wector
(&1, ,&). Then for arbitrary measurable reflection g @ R™ — R and for ar-
bitrary B € B(R) we have:

P({w: gl((€1, &) (W) € B}J=f~'f iy T tn(E e Ty dan,
.

Theorem 10.5Let (5 h1<p<n be a family of independent random wariables and
fey, g, be the density function of random vector (&1,--- & ). If fe, is the density
function of £ for 1 < i< n, then

ferognlm, o xa) = J[ falz:) (@1 z0) € B*).

1<i<n

Definition 10.5 Let (£xh<k<n be a family of independent random variables
and let &  be normally distributed random variable with parameter (ay, o) for
1<k <n. Then (&, - &) is called n-dimensional Gaussian veetor and its density
funetion, following Theorem 5, has the following form

Fa, —a 2
— 1 E_ E:—i [ EUE j
(vV2m)m [Thy on ’

where (x1,--- ,2n) e A", a1, ap e Rooy =0, [ =00
n-dimensional Gaunssian vector (1, 1) & called standard if

f-fl.---_afn[rl:u' Ty )

1 _%n =}
f:'u.---.:'?n(rlr“‘ 1 In) = [ -ﬁ)ﬂ-e Tim1a ((z1,-,mn) € R").
v

Definition 10.6 Assume that (£, --- &) is a Gaussian random vector. Fune-
tion Py, ¢, defined with
(YB)(B € B(R") — Pey....£,(B) = P({w: (2(w). - ,én(w)) € B)),

B

is ealled n-dimensional Gaussian probability measure.
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By using Theorem 10.3, we have

—T" [mi—a:]E
Bil f f k=l aey di,“l ca dl“ﬂ
(v2m ”m_ ok

Let consider some examples.

Example 10.3 Let (£, .£&;) be the n-dimensional Ganssian standard prob-
ability measure and [J,_,[ax, bx] € B". Then

fn(ﬁ[ﬂmbﬁ] H[‘i' b) — ®iag)]-
k1

Example 10.4({distribution y2). Let  (&.---.,& ) be the n-dimensional
Gaussian standard random vector and V' be n-dimensional sphere with radius p

and with center (0,--- ,0) € ", Then

n
——

- 1 n z
'F-:Ei-'sﬂl:_.{'e;;_]:/f %JnE_Zk-i%drl'”drn:

n W
Vi

1 [x]
=== % /. pl -E!_;':_-'_'EJ",
270G 0

where I'(-) is Eulerian integral of the second type.
Distribution function F\2 of random variable e =4
square) -distribution, which has the following form:

—

h=]

-+ £2 i called w2 (chi

0, if =<0,
Falr)= m :>< fu‘ﬁr”—l -e_r_fdr, if =0
Henee,
0, if r <0,
fealz) = { . }__ilr(%} % o7 'E_%z%@ if r=>0 =

0, if =<0,
= 1 1_1 _z .
= xrIT .77, if =0
2Tr(E) '
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where f is an arbitrary continuous function defined on V.

Remark 10.2 Let X, --- . X, be an independent family of standard normally
distributed real-valued wariables. Then CHIDIST |z, n) caleulates value

Pllw:we Q& iw) = Z_Xﬁﬁwj =>z})
k=1

for = = 0. For example, CHIDIST(2, 10) = 0, 996340153.

If we denote with T', a standard n-dimensional Gaussian measure on R™, then
the command 1 — CHIDIST (#%. n) caleulates its value on n-dimensional ball V' (r, n)
with radius » and the center at the zero of B™. For example, T'5(V(2,5)) =1 —
CHIDIST(22%,5) = 0, 450584038.

Example 10.5 Let (e} )<p<m (m = n) be the family of independent normed
vectors in K™ and let £, --- ., be the family of one-dimensional independent
standard Gaussian random wvariables defined on (1,5, P). Then measure p,
defined with

(VX)X € B(R") — pu(X) = P({w: ) &lw)er € X})),
k=1

is a Gaussian measure defined on R™ . Note that an analogons representation is
valid for all Gaussian measures defined on R™.

Example 10.7{5tudent’s distribution ¢,). Let &,--- ,£,, be the independent
family of one-dimensional standard Gaussian random variables defined on (£2.F, P)
and G : R®*! — R be a measurable function defined with

Tril
L
{ Zz—i Ty

mn

The random variable t,, = gi&.,- -+ &, £ny1) 15 called Student’s random variable
with degree of freedom n.
Following Theorem 10.4, we have

gl Tppr) =

ptn (T:I = f -1— E_E£-1 %Edri"'d'r“'
g=1([—0.x)) (V2T)"

It ean be proved that
0, if <0,
f*n LT:I = 1 Piq_i\l ﬁ\l—%'—i

ETE%:I—’X(]."‘.R lfi"}ﬂ.

It is resonable to note that M(t,) =0, when n = 1.
For variance D(t,) we have

I if n>2
Dit,)={ » T ’
fn) { oo, if D<n<2
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Remark 10.3 Statistical funetions TDIST (z; n; 1) and TDIST(x:n; 2) calculate
the values P({w : tp(w) = 2}) and P{{w : |t5(w)| = x}). respectively.For example,
TDIST(3;4; 1) = 0,19970084 and TDIST(3;4; 0) = 0,039941968

Exammple 10.8(Fisher's distribution ch deg))" Let &, -+ &g qyp, be the in-

dependent family of one-dimensional standard Caussian random variables defined
on ((1.F,P) and & : B™*!' — R be a measurable function defined with

Tk,_j 1 2,
[
GiTL, Ty k) = SR a
|—J:':|+1
]

The random variable £, 1,y = (&1, - &, §nta) is called Fisher’s random vari-
able with degrees of freedom %y and k.
Following Theorem 10.4, we have

1 R
p’slki k2||: ,:I=/. ) — EJ.;-_j_ 7 drydan.
5= ([oe2))

(v2m)"

It can be proved that

0, it =<0,
f\'—fl’k‘ ' ||:.l-""l‘:| = 5 .|1n.'1 %1' FI:EL-EEi:' _I‘r.'i—l 1-1 bl _EUQ-E:L -
S EKE}QWT (1+ 527 , if =00

Remark 10.4 The statistical function FDIST (2 ky: ks ) caleulates value P({w
kg (w) < 2}). For example, FDIST(2;5;6) = 0, 211674328,

We have the following proposition.
Theorem 10.6 Let £ and & be the independent random variables with density

functions fz, and fe,. respectively. Then distribution function Fg . and density
funetion fe e of sum & 4 & are defined with:

T =]
F51+£QETJ=/. dry Nz fe(ze — 2y jdry,

— —

]

ferqea(r) = flz ) falzg — 2y )dry.

—

Proof. Sum £; +&; can be represented as contimious reflection g of the random
vector (£.%), where giry,r3) =2, 4+ 1. Weset B = (—oo, r). Using theorems
10.4 and 10.5, we get

Fepjeolz)= Pl{w: Si{w) + &2iw) < r}) = P({w: g(&, &)(w) < z}) =

= ff foi(TlJf&(Tz:'dTldITEJ
g~ !{(—oc:z))
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Note that
g (—oes ) = {(z1, 22) |11 + 72 < 2},
Hence

Fepre(z) = ff fey (1) fey (22)drydry =
{{zq.m0) | ooz}

S Tr—T] e I—Ii
=/ drlf dra fe, (21) fey (22) =f drlf dixy + r2) fey(r1) feg(72)
— o —a o

—

+n T T +oa
=f drl/ drfg,lzrl,'lf.—_.il:i“ﬂ:f -:‘Ea‘f Selmy) fr g (22)dry,

where T = ¥ + 2.

Clearly, for fi-almost every x point of R =atisfies the following equality,

dEe, peq(x) e
ferre (z) = %"l‘ = fey (1) feo (2 — 1 )dy.
r — -

The integral standing in the right in the above equality is called winding of
functions f; and fz and is denoted by fe, # fe,.

It is not diffieult to show that fi + fe, = fe, # fg,, e,

4o o
fe(my) feolx — 2y )dzy = felr — 2q) feg (2 )iy
— — o
Tests

10.1. Assume that the distribution of 2-dimensional discrete random vector
(£,.£5) 18 given in the following table

(682 [ (43) [ (4,10) [ (4.12) [ (5.3) [ (5.12)

P 0,17 | 0,13 0,25 0,2 0,25
Then

1) the distribution law of £ is given in the table
a)

£ 4 5

P | 0,55 | 0,45
b)

£ 4 5

P | 0,55 |0, 45
2} the distribution law of & is given in the table
a)

&3 0 |12

P | 0,37 | 0,13 | 0.5
b)

&3 [10 J1z |
P[0,35[0,15 |05
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3) FEi:&Qt‘i'rE; 10,5) is E‘.]U.E.l to

a) 0,36, hJ 0,34, c) 0,32, Ij_:I 0, 3;
1) P({w: (&2(w),£2(w)) € [1.5] x [5,8]}) is equal to

a) 0,30, b) 0,38 ¢ 0,37, d) 0,36

10.2. Distribution laws of two independent random variables £ and £ are
given in the following tables

12 3 & -2 |2
P07 03" Pl0,3]07]|"
respectively. Then the distribution law of £, - &, is given in the table
a)
£1:6 | -6 | -4 |4 6
P 0,08 | 0,22 (0,48 | 0,22 |7
b)
16| -6 | -4 |4 6
F 0,09 | 0,21 | 0,49 [ 0,21

10.3. A distribution funetion of 2-dimensional random vector (£, &) is defined
with the following formula

[l —e iyl —em ) w20, 32z = 0,
Fepeolm,m) = { 0, ry < 0orxe <0
Then
a)
(e—dmi—2¥1) ) =0, 3 = 0,
Y=
fergy (21, 22) { 0, ry < 0or xz =< 0,
b)

(Be=1m1=221) 3y >0, 2, >0,
5 "I = ‘I .
ferga(z1, 22) { 0, ry < 0orxy < 0.

10.4.The density function of 2-dimensional random veetor (£1, &) is defined with

20

x2) = R
7216+ 22)(25 4 22) nF) €8

fei tolm,72) =

Then
a)
1,1 T, 1 1 Tz
=|— — — = — =9
Fey ga(m1,72) = (5 + —aretg())(5 + —aretg(35)),
b)

I 1 T |

F —(1 ! i 11 tg(
£1.821T1, 2] = 2+WEVC§£4J,E2+WWCQ 3 I

10.5. It is known that the freedom coefficients of the general =olution of dif
ferential equation y + 5y + 6y = 0 are independent random variables uniformly
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distributed in interval (0,1). The probability that a general solution of the differ-
ential equation will get value = 0,5 in point = = 0, is equal to
a) 0,5, b) 0,75, ¢} 0,6, d) 0,85

10.6. It i= known that the freedom coefficients of the general solution of the
differential equation y + y = 0 are independent random variables normally dis-
tributed with parameters (0,1). Then the probability that the general solution y
satisfies the following conditions

-
y(0) €(0,2) & y(5) € (=2.1),
i= equal to
a) 0,2245785, b) D,7767678, ¢) 0,3665582, d) 0,8508760.

10.7.It is known that the freedom coefficients of the general solution of the dif
ferential equation ¥ — In6y + In2ln3y = 0 are independent random variables
uniformly distributed on the interval (0, 1). The probability that general solution y
satisfies the following conditions

y(0) € (00,1) & y(1) € (—o0,2),

is equal to

1
d) L.

|
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Chapter 11

Chebishev inequalities. The law
of three o

Let (£}, F, P) be a probability space.

The following proposition is valid.

Theorem 11.1 (Chehishev’s ! T inequality ). For arbitrary non-negative ran-
dom variable £ and for arbitrary positive real number e the following imequality

M
Pl{w: &) > e}) < 2%,

holds.
Proof. Clearly,

Mg = Mg In) = M(£ - Tppgyze + € Tuty<q) 2
2 ME Tgyzq) Z € P{{w 1 £(w) = €}).
Finally, we get
. _ Me
Pl{w:glw) z e}) = —.

£

This ends the proof of theorem.
Theorem 11.2 (Chebishev's IT inequality). For arbitrary random wariable n

and for arbitrary positive number & = 0 the following inequality

bt Ml - _ Dy
P({w:mw)—Mn|=zo}) < —

holds.

Proof. We set :

'p.Chebisher [4(16).5.1821. - 26.11.(8.12)1894] - Russian mathematician, Academician of Pe-
tersburg Academy of Sciences (1856), of Berlin Academy of Sciences (1871) and of Paris Academy
of Sciences [1874).

o1
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£lw) = (n(w) — Mn)*, e = a*.

Following Chebishev's T inequality, we get

- Min-— Mun)?

P{{w : (n(w) — Mn)* = a*}) —

Note that
{w:(n(w) — Mn)?* 20} = {w: |p(w) — My| = o}.
Finally, we get
- . Dn
Pllw:niw) —Mny| =z a}) = —.

=

Example 11.1 Assume that we survey the moon and measure its diameter. As
sume also that the results of survey are independent random variables £, .-« ,£&,. As
sume that a is the value of moon's diameter. Then |5 (w) — a| will be mistake
in the k-th experiment (1 < & < n). The value /M (& — a)? = /D&, will be error
mean square deviation. Assume also that the following conditions

a) M& = a;

by Dg =1:

) (£xh<pen are independent,

hold for 1 < k < n.

It i= natural that value J, = %[El +- -+ &, ) may be considered as an estimation
of parameter a. There naturally arises the following problem:

Haw many measures are sufficient to establish the validity of the following
stochastic inequality

Pl{w:|J,(w)—al =0,1}) = 0,95 ?
Clearly, on the one hand, we have
Plw: |Jp(w) —al =0,1}) < 0,05
On the other hand, we have

_ D(Jy)
= (0,1)2

P(jw : | Jo(w) —a] > 0,1})

_ @ lia D& Fn 100

N 0,01 0,01 n
From the latter inequality we deduce that the smallest natural number n =ng for
which inequality ?%' < 0,05 holds, is equal to 2000.

Hence, we get

Pl:{u.! : |J2|;||:||:|I:u.::| — n'll < 0, 1}] = D,DE,
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i.e., 2000 measures are sufficient to be sure with probability > 0,95 that the mean
Jogon will be deviated from the length a of the moon's diameter for no more than
0, 1.

Theorem 11.8 (The law of three o). For arbitrary random variable & the
following inequality

i o1
P({w: |éw) ~ ME| > 30}) <
holds.
Proof. Indeed, using Chehishev’s IT inequality, we obtain
De
W N — M e Ve ==,
P({w: )~ M| 230) < o2 =

Tests

11.1. Tvis known that D& = 0,001. Using Chebishev's inequality the probability
of event {w : |£(w) —M§| < 0,1} is estimated from bellow by the number, which is
equal to

a) 0,8 b) 0,9, ¢) 0,98 d) 0,89,

11.2. We have D¢ = 0,004. It is established that P{{w: [£{w) — M¢| < e}) =
0,9; Then ¢ is equal to
a) 0,1, b) 0,2, e 0,3, d) 04

11.3. The distribution law of random variable £ has the following form

£]0,3]0,6
Plo,2]08

Using Chebishev's inequality the probability of event {w @ |£(w) — ME| < €} is
estimated from the below with the following number
a) 0,83, b) 0,87, &) 0,88, d) 0,80

11.4. Mean eonsumption of water in populated area per one day i= 50000 liters.
Using Chebishev's inequality estimate from below the probability that in this area
water consumption per one concrete day will be < 150000 liters.

a) 3, b % ¢ 1. d3i

11.5. The probability that an event 4 occured in separate experiment is equal to
0,7. Let denote with 14, a fraction the numerator of which is equal to the occurred
mumber of event 4 in n independent experiments, and the denominator of which is
equal to n. Minimal natural number n, such that P{w : |v,(w)—p| < 0,06} = 0,78
is equal to

a) 327, b) 427, ¢) 527, d) 627.

11.6. Assume we throw a die 1200 times. Let £ denote the number of experiments
when number 1 has heen thrown. Use Chebishev's inequality for estimation from
helow of the probability of event |w @ £w) = 800},
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a) 0,74, b) 0,75, ) 0,76, d) 0,77

11.7. Assume that we throw a die 10000 times. Use Chebishev’s inequality to
estimate from below the probability that the relative frequency of event- " Number
G is thrown by us” would be deviated from mumber % with probahility = 0,01.

a) 0,84, b) 0,85, ¢) 0,8, d) 0,87

11.8. Assume that we shot the gun 600 times and the probability of hitting
the target in a separate experiment is equal to 0,6, Use the Chehishev's inequality
for estimation from the below of the probability that the number of suceessful shots
will be deviated from number 360 by no more than 20.

a) 0,63, b) 0,64, ¢) 0,65 d) 0,66

11.2. It is known that the mean weight of a bun is 50 grams. Use the Chebishev's
inequality for estimation from below of the probability that the weight of randomly

chosen bun will be < 90 gram.
a) 3, b g o 3 d 3
11.10. Use the Chehishev’s inequality for estimation from below of the probability

that the mean speed of a projectile, aceidently shot from a gun is < 800 £

— relative
to the hypothesis that the mean speed of the projectile is equal to 50

[
3 3 1 3 sec’
a) 7, b) 5, ¢ 3 d -
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Chapter 12

Limiting theorems

Let (£1,F,P) be a probability space and let (X )p-y be an infinite sequence
of random variables.

Definition 12.1. We say that a sequence of random variables (X )poy  con-
verges to number a € R in the sense of probability if for arbitrary positive number
£ =0 the following condition

,:_Hm Pllw: | Xpw)—al <e})=1
holds.

This fact is denoted with

lim X, £a.
h—ma

We have the following proposition.

Theorem 12.1 (Chebishev). Assume that mathematical variances of the ran-
dom variables X (k€ N) are jointly bounded, ie.,

(Fe)iee RY — (Wn)ine N — DX, < e)).

Then

Proof. Following Definition 12.1, it is necessary and sufficient to show the
validity of the following condition

. R - .
o/ — i W |— Nolw) — MX— =11
(Ve)(e >0 — lim P({w In(; Xip(w) = MX;) - 0] <e}) =1)

1 k=1
Setting ) .
Valw) = =(3 Xilw) = 30 MX,),
k=1 k=1
a5
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we get

MY, =MZ2 .;Z_r”~ —Z MX,) =

Z MX, ——Z MX, =0,

= Dt%t; —Xﬁc - LZ_; ﬂ.j_f_x_g_,_:l:l =

Using Chebishev’s IT inequality, we get

1 e .. 1 . . ne
D[E;iﬂ = H—ZD(;-MJ <z ==

Dy, e
"I —_ "I T -
Pllw: |Yalw) — MY;| <€}) = Z 2 1 —
Henee,
lim P({w:|¥,(w) - MY, |<e}) =1
e,

hm ZEL—ZHEN_CI

This ends the proof of theorem.
As corollary of Theorem 12.1. we get

Theorem 12.2 (Bernoulli). Let (Z )iy be a sequence of independent simple
diserete random variables distributed by Bernoulli law with parameter p. Then

1o P
iy
f}l_”iﬂngz‘* P

Proof. The sequence of random variables (Zy )reny satisfies the conditions of
Theorem 12.1. Hence,

lim — Zzi - Z MZy) £ 0.

But N
lim — Z MZy) £ p,
j,=

— O 'n.

kil
lim | ZZ;_,—p]lé 0,

which is equivalent to the following condition

i, ;Z % =

This ends the proot of Theorem.
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Theorem 12.3 If f is a continuous real-valued function defined on [0,1] , then
the sequence of random variables (M f (%[22’:1 i) lnen  is uniformly converged to
function fip) in interval [0,1], where (Zp)rey is the sequence of independent
random variables distributed by the Bernoulli law with parameter p.

Proof. For arbitrary € = 0, we have

T i R

1 & ) 1 e
a"lff|f(5£§3ﬁc” —fip)l = Mﬂfiaﬁ;-zk)— FE - L pd v zy—fip)<a +

1<
+*n"f|:.|f|:5 E Zy) — fipl I{w|jL% onoi Zul—fp) =€} = |S1i11'} |fip+z) — flp)| + o(n),
k=1 T =

which ends the proof of Theorem 12.3.

Remark 12.1 If f is a continnous real-valued funetion defined on [0,1] , then
lim zn:fﬁijf-‘krkil — )™ * = f(z)
iR

for = < [0, 1] ; Note here that the above-mentioned convergence is uniform on [0, 1].
The last relation is a different entrv of the uniform convergence of sequence

1 n T ,;i" o )
uMﬂ;(E Zi)) ey = “; FSIC (1= P ey

to function f with respeet to p on interval [0,1]. From this fact we get the
well known Weierstras 'theorem about approximation of the eontinnons real-valued
funetion by polinomials. Note here also that these polinomials have the following
form

=]

)Rk (1 — )% (n e N).

> f(

k=0

n

These polinomials are called the Bershtein 2 polinomials. As corollary of Theorem
1 we get the following proposition.

4

identically distributed random wariables. Assume also that MX, =a and DX, =

0% < oo; Then an arithmetic mean of random variables converges in probability

gense to number a, ie.,

Theorem 12.4 (The law of large numbers ). Let (X )iy be a sequence of

kel

N R,
dm 72 X Za

k=1

Weierstras, Karl Theodor Wilhelm (31101815 - 10.2.1807 ) - German mathematician;
Academician of Petersburg Academy of Sciences{1864); Professor of Berlin University (1856).

?Bershtein, 5 (22.2(5.3).1880 - 26.10.1968 | - Russian mathematician: Academician of the
Ukrainian Academy of Sciences(1925) and academician of the USSR Academy of Sciences (1929).
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Proof. Since the sequence of random variables (Xi)pey satisfies the conditions
of Theorem 1, we get

Clearly, 137 | MX, =22 =g Note also that

ol e S U 2 i LSy 2
f}l_nia#;_xk_zu_m —nll_I{}QE;CZ_;_Ek £ 0.

The last equality is equivalent to the following equality

1 n
lim —% X £0.
Jm 2D X 0
k=1
This ends the proof of theorem.

Remark 12.2. If (Xp)cy is a sequence of independent random variables
normally distributed with parameters (0, %), then

ol ap o
Hm 5D X5 £t

Remark 12.3 Assume that the probability of oceuring of event 4 in each
experiment is equal to p. Let 1, denote a relative frequency of the event 4 in n
independent experiments. Using the law of Large numbers it is not difficult to show
that for arbitrary positive numher ¢ the following condition

lim P{w: |pnlw) —pl <eti=1

holds, 1.e.,

. r
lim 15, = p.
T— T

Tests

121. Let (& )y be a sequence of independent random variables uniformly
distributed on (a,b). Then
1)

—ol Tl

1 1]
lim — Z‘S"" £ 4,
k=1

where A is equal to
a)

=8
|
=]

a+tb b—a atb
L

I:";l|
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hn}u_ztgfig

where B is equal to
r Q 2 2 r 3 .-_
a) L ) aliabid? o (7 gy Coa)

12.2. Let (& )pewy be a sequence of independent Poisson random variables with
parameter A =5 Then
1)

o Z & =

where A is equal to
al 3. h) 4, ¢ 5 d)6;
2)

lim —Zgz LB,

T— o T2

where B is equal to
a) 28, b) 20, ¢) 30, d) 31

12.3. Let (& )p=y be a sequence of independent Bernoulli random wvariables
with parameter p. Then for arbitrary non-zero real number s we have

B
dm 7D 6 =4

where A is equal to
a) p, b)) pg, e) p, d) ¢

124, Let (& )=y be a sequence of independent Cantor’s random variables.

Then
11111 n — Z f b=

where A is equal to
a) 0,3, b) 0,5, ¢ 0,6, d) 0,7

125. Let (£4)peny  be a sequence of independent geometric random variables
with parameter ¢ = 10,3 . Then

LR Z &=

where A is equal to

20 20 31 32
a) 2. by & ) A gy 2
12.6. The sequence of functions [E;;D POk — IJ‘""—”" Jnen is uniformly
converged to function f in the interval [0, 1], v.here flz) is equal to
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100  G.Pantsulaia Elements of Probahility Theory

a) »%; by 2% ey Y d) 2
12.7. The sequence of functions (¥ ;_, 5111((5—;,12}(-‘,1{1““' (1 — )" F) o is uni-
formly converged to function f in the interval [0,1] , where f(z) is equal to
a) sin(z?), b)) sin(z*), ¢) sin(z?), d) sin{z?).

12.8. Let (£,)nen be a sequence of independent random variables with identical
distribution functions. The distribution law of £, is given in the following table

& —vr+1]0 Vv +1
1 ] 1
Pl e s il ey

Then the application of the Chebishev theorem with respect to the above-mentioned
sequence
a) is possible, b) is not possible.

12.9. Let (&x)pen be a sequence of independent Poisson random variables with
parameter k. Then the application of the Chebishev theorem with respect to the
above-mentioned sequence

a) is possible, b) is not possible.

12.10. Let (& )pew be a sequence of independent random variables and £ he
uniformly distributed on  [0;vk] for & € N. Then an application of Chebishev
theorem with respect to the above-mentioned sequence

a) is possible, b) is not possible.
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Chapter 13

The Method of Characteristic
Functions

Definition 13.1. Let (Q, F, P) be a probability space. A characteristic funetion
of mandom variable £ : Q2 — R is ecalled the mathematical expectation of compler
funetion e® = cos(té) +isin(tf) and is denoted with ®; | i. e,

B(t)=Me* (teR).

Let £ be a discrete random variable, i. e.,

fw) =) melay(w) (we),
kel
where (Ap)eeny 1= a family of pairwise disjeint events covered £ and (g )pey be a
sequence of real numbers. In this situation, we have

Be(1) = Me™ =) e**P(4;) (teR).
keN
When f; is the density function of absolutely continuous random variable &,

then we get .\
Be(t) = e fe(x)dz  (t

—

R).

im

From the last relation we see that $¢(t) is Fourier transformation of f;. From
the course of mathematical analvsis it is well known that if we have the Fourier
ltransformation ®; of function f¢ then in some situations we can restore function
fe with function &¢. In particular,

+oo
fe(x) =f e~ e (t)dt (x € R).

o

Fourder, Jean Hoptiste Joseph i 1.3. 1768-16. 5. 1830)-French mathematician, the member
of Paris Academy of Sciences (1817), the member of Petersburg Academy of Sciences (1520).
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102 . Pantsulaia Elements of Probability Theory

The above mentioned relation is ealled Fourier inverse transformation .
Let consider some properties of characteristic function.

Theorem 13.1For arbitrary random wariable £:{} — R we hawve

$:(0) = 1.

Proof. Since $.(t) = Me' (t = R), we have

Fe0)=M1=1.

Theorem 13.2. For every random variable £ the following condition
(7E)(t e R — [De(t)] < 1).
holds.
Proof. Note that for every random variable #n the following condition
|Mn| < M|n|

holds. Hence,

|Be(t)] = |Me™™| < M|e®| = M1=1.

Theorem 13.3. For arbitrary random wvariable £ we have
‘i"g[—le = "i",slzf:l
Froof.

de(—1) = M{e=*) = M(cos(—t£) + isin(—t£)) = Mcos(—t£)) + iM (sin{—t£)) =

= M (cos(t&)) —iM(sinitf)) = Mcos(t£)) + iM (sin(tg)) = Me¥s = &, (1).

The following two facts are presented without proofs.

Theorem 13.4Characteristic function $¢(t) of random variable £ is uniformly
continuous on the real avis.

Theorem 13.5 (Uniqueness Theorem). The distribution function of the ran-
dom variable is uniguely defined with ite ehamacteristic funetion.

Theorem 13.6 If random variables £ and n are linearly related with £{w) =
an(w) +blacs R, be R,we 1)), then

By(t) = P, (at).
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Proof. Indeed,
Be(t) = Bapyp(t) = M@+ = N Niomt = G (at).

Theorem 13.7 The characteristie function of the sum of two random variables
is egual to the product of characteristic functions of the corresponding random wvari-
ables.

Proof. Let £ and 5 be independent random variables. Then complex random
variables e and & are independent, too. Now using the property of mathemat-
ical expectation we get

By (t) = Mttt = Me® Mel™ = d(t) - &,(t).

Theorem 13.7 admits the following generalization.

Theorem 13.8 If (£p)1<k<n 18 the finite family of independent random vari-
ables, then

don o (1) =[] Belt) (2 R).

e T
k=1

Let £ be a random variable and let (£ )pen be a sequence of random variables.

Definition 13.2 The sequence of random variables (p)pey is called weakly
converged to random wariable £ if sequence (Fi lnew s convergent to funetion
E: at its continuity points.

We present one fundamental fact from the probahbility theory without proof.

Theorem 13.9 The sequence of mndom variables (&y)pey weakly converges
to the random wvariable £ if and only if the sequence of characteristic functions
(Be, Jnen comwerges to the characteristic function $¢ .

Let consider some examples.

Example 13.1 Let £ be a Binomial random variable with parameters in,p),
Le.,

P({w:&w) =k} =CRp* (L —p)"™* (0<k<n).
Then .
Be(t) = Me™ =3 e Ofpf (1 —p)"F =
k=0

k3
=) Ciep) 1 —p T = et + (1 —p)]" = (pe* +q)", g=1-p.
k=0

Example 13.2 Let ¢ be a Poisson random variable with parameter A,
1. e,
k

Plw: fw)=k}) = %e"‘ (k=0,1,--),
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104 G.Pantsulaia Elements of Probahbility Theory

Then - _
20tk L& (et

o e—.l. —

k=0 k=0

= ity ok
_ E-;_'}' Z (f }i.:| _ EJ‘.E‘“—.}. _ E:-)'-I:'E‘"—]-j

Example 13.3 Let £ be a random variable uniformly distributed in the interval

(a;b) 1. e.,
fil@) = { = if re&[a.b],

0, if =& J[a.b.
Then
+oo b itw 1
— Meit = dtrp oy Jo £ _ it )b _
de(t) =Me j;.x. e fe(z)dx L ﬁ—adr (ﬁ—ajz'i‘e |‘I
— 1 ith _ ‘.‘-ta'-l
(b aJ«;r'l‘E' o

Example 13.4 Let £ be a normally distributed random variable with param-

eters (a,a?), i e.,
2

1 [r—m
felz)= ——=—""FF (zcR).

W 2ma

Then .

Be(t) = Mett — f &t £, (z)d =
—
+oo | p—a)?
= 1_ f EI#I_[EE_{ET.

VEATT J s

Setting » = === — ifo, we get

I—a
=z +ite, T =a+ oz +ita’, dr = adz.

e}

With simple transformation we get

= o =

+oo—it -
Be(t) = — f T gitlaeovieet) et g

" &
VITT J _seite
oy o 1 +oo—ite 2
S i e~ Tdz (t € R).

‘-,E —oa—ita
Using the well known fact from mathematical analysis we get

+oo—ito K
(vhi(be R — e~ Tdr = v2m),

—ac—ita
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Finally we get o
$e(t) =T (tcR).

Remark 13.1 Characteristic function &, of normally distributed random vari-
able ¢ with parameter (0, 1) has the following form

2

Be(t)=e"T (teR).

Example 13.5 Let ¢ be exponential random variable with parameter A, ie

e ? i x>0,
ff':rj_{ 0, if z<o0.

Then e e
Be(t) = Me'ts = f et fo(z)dr = f Rl
]

—a

=A [P (ete M) = A [P0 (et Fde= }Lu; ::|

Example 13.6 Let £ = ¢ be a constant random variable, i.e.,

Pllw:gw)=c})=1.

Then _ _ _
Be(t) = M = Me®e = gite,

Let consider one application of the method of characteristic functions.

Theorem 13.10 (Lindeberg ? -Levy *). If (& )pey be a sequence of independent
identically distributed random variables, then the sequence of random variables

(Chat - MTL, &),
VDS & e

is weakly converged to the standard normally distributed random variable, ie.,

(vrjire R — 11111_1—"( Zi—ljfﬂ;z\itz_; 1‘511' <)) =
k=1

? Lindeberg, JW.- Finnish mathematician. He was the first who proved Theorem 10 which in
literature is known as " Central Limiting Theorem”.

* Lewvy, Paul Pierre (15.9.1880 - 15.12.1571 )-French mathematician, the member of Paris
Academy of Sciences (1964). He was the first who applied the method of characteristic functions
to prove "Central Limiting Theorem”.
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1 * e

= e~ Tdt).
Var ) )
Proof.  Here we present the proof of this theorem in the ease of absclutely

continious random variables. Assume that m = M £, o = /D&, We have

lim & on melt)= lim ®_ . —m t) =
e Bl (= 08 B o 501
t - £ Ty @ g —m ()
B N T 1 te=1 f.;m wud
Al Pon Gy () = lim, “_I_Il Boom () = Jim e =
. Py Ind —mli_t;:'
= lim e~ HFEVR
A

We set B(t) = ¢5_m (). If we denote with f(z) the distribution function of

random variable -":'a—"ﬂ then we get

+ac -+ oo
Bt = f itr2e® flx)dr = — 2 f(x)dr.

e ] — 0

Note that

) =«;Mrl&+mj =0,

A
&(0) = —f w2 flx)de = —1.

[ s}

The Maclaurin ? formula with the first three members has the following form

&'(0)

B(t) = B(0) + TR t2 + alt)t?,
where lim;_.qa(t) = 0. Hence, we get
2 " £3
B—) =140 — — — 4+ a(— _
W y 2n VR onyn

From the course of mathematical analysis it is well known that In(l + a(n)) =
o(n) when o(r2) is an infinitely small sequence (ie., lim,_...o(n) =0 ). Finally we
get

] 3
. . In{140. £ S P
lm Byrn e () = lim ™" w7 wm) =
T =

T— 2
W T

* Maclowrin, Colin (1698 - 14.6.1746 ) - Scottish mathematician.
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2 2 2 3 a

£ 13 1 3 3 P [ 2

= lim " wHUTRIRR) = mn—e(—THalTR)rR) — o~
T—s 0 '

which ends the proof of theorem.

Example 13.7 Assume that the following conditions are fulfilled:

1) Let & be the moon's diameter estimation obtained with &-th measure
(keNj;

2) a=M& (ke N)is the moon's diameter;

3) D& =1(keN);

4) the results of measures (£n)pey 18 a sequence of normally distributed inde-
pendent random variables with parameters (a, 1).

Using the Chebishev inequality (ef. Chapter 11, Example 11.1) we have proved
that ne = 2000 is such smallest natural number for which the following stochastic
inequality

1 =
P({w: > &ulw) —al £0,1}) = 0,95
" k=1

holds. MNote here that with the help of Chehishev inequality it is not possible to
choose natural number smaller than nc = 2000 which will satisfy the ahove men-

. . . . n —na
tioned inequality. Since h-f—:—

W
parameter (0,1), we can calculate the smallest natural number ne, for which the
same inequality holds. Indeed, we get :

is the normally distributed random variable with

1 n ) —
Pt -3 &) —a] 0,1} = P(fu : |2z &) 702y

k=1

“ ﬂ‘l} =

_ e Srlw) —ma 3 —
= P({w:| 7 | <0,1y/n} =1—28(-0,1,/n).

Clearly, we must to choose a such smallest natural number ny which will be a
solution of the following inequality

1—2B(—0,1/7) = 0,05.

Ve hav
We have 1- 0,95

$(—0,1,/7n) < = &(—0,17) < 0,025 =

—0,1ym < &740,025) = /n = 100($1(0,025))° =
n = 100(1,96)% = n > 384,16 = n > 385,

Finally we deduce that nyp = 385, Consequently, ny = 385 is a such smallest
natural number which is solution of the following inequality

1 &
P({w: |—> &w) —al 0,1} = 0,05.
k=1

It is clear that natural number n2p = 385 is smaller than natural number . = 2000
obtained with the help of the Chebishev inequality.
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Remark 13.2.  If the sequence of random variables (£pizew i= weakly con-
vergent to random variable £, then for sufficiently "large”™ natural number n the
distribution function F: of £, can be assumed to be equal to distribution funetion
F: of random variable .

Tests

13.1. Let define sequence of random variables (£;),=n with

: 1
Twlw e il — Slw)=0 — =1,
(Vu)(w € 0 = alw) = O = 1)

Then the sequence of random wvariables (&, )azx 1= weakly convergent to random
variable £, which is equal (with probability 1) to
a) e—1, b} e, e e d) e4+1.

13.2. Let &, be the Poisson random variable with parameter A +o(n) forn 2 IV,
where A = 0, and let (o{n)),cy be an infinitely small sequence. Then the sequence
of random variables (&, ),z is weakly convergent to the Poisson random wvariable
with parameter g, where g is equal to

a) A, bl AT e) MLI4A), d) A4 A2

13.3. Let &, be a random variable uniformly distributed in interval (ay, b,
for n € N.  Assume also that lim, ... 0, = a and lim,_...b; = b Then the
sequence of random variables (£, )nzx is weakly convergent to the random variable
uniformly distributed on interval (e, d), where (e, d) is equal to

a) (a,b), b) (5520t o) (a,2), ) (2Eb).

13.4. Let (&, )=y be an independent sequence of random variables and let £,
he a normally distributed random variable with parameters (51,,—; 27.5;} for ke N.
Then the sequence of random variables (3., & Jnen is weakly convergent to the
normally distributed random variable with parameters (m, a%), where (m, o?) is
equal to

a) (L,3), b) (L4), ¢ (15, d (1.6).

13.5. (The Poisson Theorem ). Let (£ )pzn be the sequence of independent
Binomial random variables with parameters (1, p, ). Assume that lm,_...n-p, =
A = 0. Then the sequence of random variables (£, )nen is weakly convergent to the
Poisson random variable with parameter p, where p is equal to

a) A+1, by A e) A1), d) A

13.6. Let (& )nzxy be the independent sequence of normally distributed ran-
dom variables with parameter (a,o%). Then the sequence of random variables
P . |
£ . . .
Subotin nen 18 weakly convergent to constant random wvariable me, where m is
e = w g

equal to
a) a, b) a®, e a® d) at

13.7. Let &, be a normally distributed random variable with parameter (mag, a7)
for 1<k < n. Then sum 3}, & is a normally distributed random variable with
parameter (m,c”), where (m.o?) is equal to
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al (ZE=1mmZE=1 T ), h‘:' EZ'E=1 mi"-Z_E:l '5";%:':-
) (ho M2 py Ti) d) (Thy M X of)

13.8. If ¢ is a normally distributed random variable with parameter (m,a?),
then random wvariable a& + b is distributed normally with parameter (e,d?), where
(e,d?) is equal to

a) (b+am,a’s?), b)) (b+ am,ad?),
¢) (h+am.,a®r), d) (b+m,ac?).

13.9. Let (£)1<k<, be an independent sequence of random variables and let
& be a Poisson random variable with parameter A;. Then sequence 377 & isa
Poisson random variable with parameter u, where p is equal to
HJ ZE=1 }"%" hJ ZE=1 'j"-k"
c) ZE=1|:1 - Aﬁcj: dJ ZE=1|:1 + ALJ

13.10. Let (£4)1<k<n be an independent sequence of random variables and let
& be a Binomial random variable with parameters (rg,p). Then Y § & is a
binomial random variable with parameters (m,z), where (m.,z) is equal to
H':' EZE:l 1':-15':'-. h‘:' LZ‘E:lk-pZ:'-.
o) (Ciakp?): 4 Cioakp®)

13.11. Let & be a number of demands of the &-th goods during one day which
is a Poisson random variable with parameter Ap (1 < kE < n). Then the probability
that the common mumber of demands of all goods during one day will be equal to
& relative to hypothesis m=10, = =MA=0.3, M= =A =08, Ap =
1.3, is equal to

a) 0,345103, b) 0,457778, ¢) 0,567788,  d) 0,103258.

13.12. The mean load transported with a ldrry on each trip is equal to m = 20,
The mean ahsolute deviation of the above mentioned load is equal to @ =1 . Then
1) the probability that the weight of the load transmitted during 100 trips
will be in interval [1950;2000], is equal to
a) 0,5, b) 0,55, ¢ 0,555, d) 0,5555
2) the value which is grater with probability 0,95 than the weight of the load
transmitted during 100 trips is equal to
a) 20164, b) 20264, ) 20364, d) 20464

13.13. A mean weight of an apple is m = 0,2 kg. A mean of absolute deviation
of the weight of accidentally chosen apple is ¢ = 0,02 kg. Then

1) the probability that the weight of the accidently chosen 49 apples will be in
interval [9,5:10], is equal to

a) 0,44; b) 0,88; ¢) 0,178 d) 0,356;

2) the value which will be smaller then the weight of the accidentally chosen 100

apples with probability 0,95, is equal to
a) 16,672, b) 17,672, ¢) 18,672, d) 19,672

13.14. The probability that tidrner will make a standard detail is equal to 0,64,
Then the probability that
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1) 70 details, accidentally chosen from the COl-
plect of 100 details will be standard, is equal to
a) 0,6241, b)) 0,7241, ¢) 0,8241, d) 0,9241;

2) the number of standard details in the accidentally chosen 100 details will be
in interval [50,65], is equal to
a) 0,1108, b) 0,1308, ¢) 0,1508, d) 0,1708.

13.15. The factory sent 15000 standard details to the stérehouse. The proba-
hility that the detail will ddmaged during transportation, is equal to 0,0002. Then
the probability that

1) 3 damaged details will be brought to bring at stérehose, is equal to

a) 0,004042, b) 0,114042, ¢) 0,134042, d) 0,154042;

2) the number of ddmaged details will be in interval [2,4], is equal to

a) 0,414114, b) 0,515115, ¢) 0,616116, d) 0,717117.
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Chapter 14

Markov Chains

Let (€2, F, F) be a probability space. Assume that we have a phvsical system,
which after each step changes its phase position. Assume that the number of possible
positions €1, €2, -+« is finite or countable. Let £,(w) be a position of physical svetem
after n steps (n € N, w = {1). Clearly, the chain of logieal transitions

folw) — L1{w) — -+ (well)

depends on the chance factor. Assume that the following regularity condition is
preserved: if after n steps the system is in position e; , then, independently of its
early positions it will pass to position €; with probability P, i.e.,

By =Pl{w:&Gnlw)=¢ [Galw) =&} (4,7 =1,2,---).

The above described model is called Markov ! homogeneous chain. Number P
is called the transition probability. Besides there is also given also the distributions
of initial positions, i.e.,

R;(D:' =P{w:&Glw)=¢}) i=1,2,--

Here naturally arises the following problem: what is the probability that the physic
system will be in the position e after n steps 7 Let denote this probability by
Fi(n), 1. e.,

Pj(n) = P({w : &nlw) = 1}).

Note that after n — 1 steps the physical system will be in one of the possible
positions € (k= 1,2,---). The probability that the physical system will be in
position e is equal to  Fy(n — 1). The probability that the physical system will
occur in position €; after n steps if it is kmown that after n — 1 steps it was in
position € is equal to transition probability Fg;. Using total probability formmla
we get
P({w: &) = &}) =

"Warkev, A (2(14).1856-20.7.1922) - Russian mathematician, the member of Petersburg

Academy of Sciences (1800,
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Y Plw:w) = ll{w: &aw) =a)) P{w: & 1(w) = &}).

ke
The formula gives the following recurrent formmla for caleulation of the proba-
hility  Fj(n) :
P0)=P", Pin)=Y_ Pin—1) Py (jn=12,-).
keN
In this case when the physical system at the initial moment is in position e; |
the initial distribution has the following form

PO =1, P =0, k=i

and probability Fj(n) coincides with Fj;(r) , which is equal to transition proba-
bility from position €; to position €; after n steps, i. e,

RI:'J’E:I = Pl:{u::ffnl:_w:' = EjHW:éDEw:' :Ez}]l' =12

In the case of the following initial distribution P,;':':':' =1, P;ED:' =0 (k1) we get

[ if =g
p‘*ﬁ‘_{ﬂ, if i)

Pj(n) =3 Px(n—1)-Py (n=12.-").
heN

Setting
Pin) = (Fjn))ijen ,
we get

PO)=I, P(1)="P, P2)=PQ1)-P=P% -,

where [ is an infinite-dimensional unite matrix and 7 is the matrix of transition
probabilities. It is evedent that

Let consider some examples.

Example 14.1( Random roaming ). Let consider random roaming connected
with infinite number of Bernoulli independent experiments when the particle "is
roaming” in the integer-valued points of the real axis such that if it is placed in the
i-th position, then the transition probahilities to positions i 4+ 1 or § — 1 are equal
to por g =1— p, respectively (0 < p < 1). If with &, we denote the position of the
particle after n steps, then sequence

folw) = &1{w) — -+ (wefl)

will be the Markov chain, whose transition probabilities have the following form
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e, it =i+
R’J"_{ g. if j=i-1

Remark 14.1 In our ease the physical system (i.e., the particle) has an infinite
number of phase positions.

Example 14.2 Let consider a physical system which has three different possible
positions €).¢€5, €5. Assume that after one step matrix T of transition probabilities
has the following form

!—‘ ] ] B

s

Il
= Sl
= pal gl

In the present example position €3 has the property that if phyvsical system will
he placed in it, then it remains in this position with probability 1. Such position
i= called "absorbable”. If the particle is placed in some position and it remains in
it with probability 0 then such position is called "reflectable”. If position & is
"absorbable” then Pj; = 1 and if the position & is "reflectable”, then Fjy = 0.

If we know that before observation the physical system is placed in position
£; (1 <i<n), then using matrix P(m) we can find transition probability Fi;(m)
after m steps. In this case, when an initial position of physical system is not
known, but we know prohabilities R;':D:' that system is placed in position «;, then
using total probability formula we can caleulate the probability that after m steps
the physical system will be placed in position ¢; by the following formula

Fiim)=Y P - Py(m).

k=1
The column-vector
ploy — (pliﬂi'1pgliﬂi'1 .., ploy
i= called the vector of initial distribution of the Markov chain and the column-vector

plm) — (pliml‘ﬁpziml',. o, pim)y

i= called the distribution vector after m steps for Markov chain. In our notations
we get

piml = plol . pim)

We present Markov theorem about limit probabilities without proof.

Theorem 14.1 Let (g h=icn be the possible positions of a physical system. If
the crossing probabilities of the Markow chain png of matriz P™) are positive
for arbitrary natural number m, then there erists a finite family of real numbers
(gi)1<icn such that

(W)(1<i<n— lim Pym)=g;) (1<j<n)

m—
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114 G.Pantsulaia Elements of Probability Theory

The number g; (1 < j < n) ecan be considered as the probability of the occurrence
in the j-th position of physical system for sufficiently large natural number m.

Tests

14.1. The matrix of the transition probabilities of the Markov chain is defined
by

) 01 0
P=|05 05 0
00 1

and the vector of initial probabilities eoincides with
distribution vector after two steps will be equal to
a) (0,125:0,475:0,4), b} (0,225;0,475;0,3),
c) (0,025;0,575;0,4), d) (0,125;0,375:0.5).

i0,2; 0,5 0,3). Then the

14.2. The matrix of transition probabilities of the Markov chain is defined by

0,3 0,1 0,6
P= 0 0,4 0,6 |.
0,4 0,3 0,3

Then matrix P(2) of transition probabilities of the Markov chain after 2-steps
has the following form
0,25 0,15 0,6
0 0,3 07|,
0,4 0,3 0,3

a)
0,33 0,21 0,46
0.4 0,3 0,3
0,24 0,13 0,33

14.3. The matrix of erossing probabilities of the Markov chain is defined by

0,1 0,5 0,4
P= 0 o 1
0.5 0,3 0,2
Then transition probability from position e; to position €3 after 3 steps PE':;:' will be
equal to

a) 0,125, h) 0,225, ¢) 0,54, d) 0,375

14.4. The matrix of transition probabilities of the Markov chain is defined by

. 0,3 0,7
P= ( 0,1 0,9 )
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Markov Chains 115

and the vector of initial probabilities coineides with (0,2; 0,8). It is known that
transition probability from anv initial position & to position e after 2 steps is
equal to 0,128, Then & is equal to

a) 1, by 2
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Chapter 15

The Process of Brownian
Motion

Let consider a little particle which is placed in homogeneous liguid. Since the
particle undergoes chaotic collisions with molecules of liquid, it is in continuous
unordered motion. A discrete analogue of this process is the following random
roaming of the particle on the real axis: the particle changes its positions in such
moments of times which are miltiple of Af (Af = 0). If the particle is placed in
point = then the transition probabilities to positions x(t) + Ar and z(¢) — Axr are
the same and are equal to 0,5 (Here we consider one-dimensional random roaming).
We assume that Ax is the same for arbitrary position x. In the limit, when
Af — 0, Ax — 0 with spatial law, a continuous random roaming is obtained which
describes a model of the Brownian! physic process.

Let denote with &£ (w) the position of the particle in moment ¢ . Assume that
the particle is placed in position z =0 in initial moment ¢ = 0. In this case of
discrete roaming during time ¢ this particle makes n = é steps. If we denote with
Sp(w) the number of steps with Aa in positive direction, then the commeon shift in
positive direction will be to equal to 5, (w) - Az and the common shift in negative
direction will be equal to (r — S,iw)) - Ar. Hence, common shift &(w) after time
t = nAt is connected with S, (w) with the following equality

§i(w) = [Splw)Az — (n— Sp(w))Az] = (25, (w) — n)Ax.
If we assume that £;(w) =0, then
felw) = (&lw) — Lolw]) + (& (w) — Eslw])

for every & e [0;f]. Clearly, in our model random variables £, — & and & — £, are
independent. As distribution functions of inereases £ — & and £_, —& are equal,
a2(t) = D¢, satisfies the following condition

Fti=a(e)+oi(t—g) (0<s<i).

! Brown, Robert (21121773, - 10.6.1858) - English botanist who was the first to discover so
called " Brownian motion”, which in the probability theory is also known as "Wiener process".
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118 G.Pantsulaia Elements of Probability Theory

It follows that «2(t) linearly depends on . It means that there exists positive real
mimber @2, such that

D&:ﬂ'z-f.

Number ¢ is ealled a diffusion coefficient of the Brownian process. On the other
hand, it is easy to show that mathematical variance of shift after time ¢ ( or after
n= % steps | is D& = (Arx)®. % Finally. we get following relation between
values Axr and Af

(Ar)?

At

Since particle transitions are independent, theyv can be considered as the Bernoulli

experiment with "success” probability p = % Then the number of steps in positive

direction S,(w) will be equal to the number of "suceésses” in n independent

Bernoulli experiments. In this case the position of particle £{w) at moment ¢ will

be connected with normed random variable S*(w) = ﬁ[ESn(w} —n) with the
following equality

&(w) = Siw)V/AAT = S (w)V/ i

VAL

= S*(w)ovt.

Using Theorem 10 of Chapter 13, we deduce that the distribution function of random
variable £(w) in the case of one-dimensional Brownian proecess has the following

form
Pl{w:m = &I:“.J_J = r2}) = lim P{{w:m = S)(w) = r2}) =
T/t At—0
ory ST
lim P{{w:z = M < rz}) = 1_f e Tdr,
n— oo /g V2T Sy
where p =g = 1.

One can easily demonstrate the validity of the following formula

Pliw :m = &lw) = wz}h) = ‘i'fy—z_.—ll — ‘i'(y—l_.—J (t>0,1n < y2).
T/ T o/t
Now we consider a problem of prognosis of the Brownian motion.
Let (&{w))i=~olw £ £2) be a Brownian process with unknown diffusion coefficient
a®. Let (&, (wo))1<k=ns1 be the result of observations on this process at moments
(te)1<k<nt1. Here we assume that ) =0, &, (wg) =0 and 5 < f54,. We set

Etie-l-l |:-IL|..-';| - E#k |:-|:,|J:I
Vg1 — T

Nplw) = (1<k<mn)

[t is clear that (Xp(w)hi<pen (w £ (1) is a sequence of independent random variables
normally distributed with parameters (0,a2), where o2 is an unknown parameter.
From the course of mathematical statistics it is known that statistics o2 defined

with
i

0n = - i ! > (Xiw) - %Zi}ﬁ
=1

i=1
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The Process of Brownian Motion

is a "good” estimation of unknown parameter o2,
The prognosis of the stochastic behavior of the Brownian motion in moment
t(f = tpy1) can he given with the following formula

P{{w:m = &(w) < yz}) = ®( b ) — @ yl.-—J it = 0,1 < yz).

Tn 't T

Remark 15.1. Using statistical functions NORMDIST and VAR (cf. p.134)
the prognosis of the stochastic behavior of the Brownian motion in the moment
t(t = tpy1) can be given with the following formula

Pliw:yn = &(w) < ya}) =

NORM DIST( _ (0:131)—
Vit x VAR(z1 : 2,)
NORMDIST e 010 1),

t\fa‘ x VAR(z| : 7).

where 2, = Xp(wy) for 1 < & < n.

Remark 15.2. It is reasonable to note that the hypothesis about the form of
the distribution function of one-dimensional Brownian motion belongs to eminent
physician Albert Einstein. His conjecture was strongly proved by American math-
ematician Norbert Wiener to whom belongs the mathematical construction of the
Brownian motion. Hence, in literature the Brownian process is mentioned also as
Wiener process.

Tests

15.1. The change of the commodity price is the Brownian process with diffusion
coefficient @2 = 1. At ¢ = 0 the price of the commodity was equal to 9 lari. The
probability that the price of the commodity will not increase at moment ¢ =9, is
equal to

a) 0,4, by 0,5, &) 0,6, d) 0,7

15.2. The change of the commodity price is the Brownian process with diffusion
coefficient o2 = 1. At ¢ = 0 the price of the commodity was equal to 200 lari.
The probability that the price of the commodity at the moment ¢ = 9 will be

1) less than 190 lari, is equal to

a) 0,3064, b) 0,3164, ) 0,3264, d) 0,3364;
2) more than 210 lari, is equal to

a) 0,2864, b) 0,3264, ) 0,3464, d) 0,3664;

3) placed in interval [185 , 205 |, is equal to
a) 0,3027, b) 0,3227, ¢) 0,3527, d) 0,3727.

15.3. The change of a bond’s price is the Brownian process with diffusion coef
ficient ¢ = 1. The firm bought the bond for 3000 lari at the moment ¢ = 0. The
prohability that

119
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120 & Pantsulaia Elements of Probahbility Theory

1) the préfit obtained by buying the bond at moment ¢ = 250000 will be more
than 300 lari, is equal to
al 0, b) 0,1, ¢ 0,2, d) 0,3
2} the damage obtained by buying of bond at the moment ¢t = 900 will be grater
than 15 lari, is equal to
a) 0, b) 1, e 0,3 d) 0,6

15.4. The change of the goods’ price in the shop is the Brownian process with
diffusion coefficient ¢% = 1. At ¢ =0 the price of the goods was equal to 50 lari.
The buver is interested to buy the goods for no more than 55 lari. The shop stops
selling the goods if its price decreases below 41 lari. The probahility that the buyer
hought the goods in moment ¢ =12 | is equal to

a) 0,2287, b)) 0,3387, ¢) 0,4487, d) 0,5587.
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Table 1. ¢(x) and o(z)
T plr) Bix) T pir) bz r @(z) B(x)
0,00 | 0,3989 | 0,5000 | 0,34 | 0,3765 | 0,6331 | 0,68 [ 0,3166 | O0,7517
o1 308G 5040 35 3752 G365 60 3144 7549
a2 J088 5080 36 3739 6406 T 3123 THE0
03 3988 5120 T 3725 G443 Tl 3101 7611
04 J056 5160 35 3712 G480 T2 3079 TH42
05 3084 510949 39 3697 G517 73 3056 TET3
i 3082 5239 40 3653 G557 T4 3034 TT03
a7 3980 5279 41 3668 G591 Th 3011 7734
05 3077 5319 42 3653 G625 T 2089 7764
0o 3073 5359 43 3637 G664 T 2066 7704
10 3070 5308 44 3621 6700 TH 2043 TE23
11 3965 5435 45 3605 67306 79 2920 TEH2
12 3061 5475 46 3580 677 &0 2807 TREL
13 3056 5517 T 3572 GRS 821 2874 7010
14 3051 BEET 48 3555 GEd4 a2 2850 7039
15 3945 5596 49 3538 GE7Y a3 2827 TOGT
16 3039 5636 50 3521 6915 &4 25803 7005
17 3032 5675 51 3503 G950 825 2780 2023
18 3025 714 52 3484 GORE a6 THG 2051
19 3918 753 53 3467 TO16 i 2732 20758
20 3910 793 54 J448 TO54 1] TOG9 B106
21 3002 GR32 55 3420 TOES 520 2685 2133
22 3504 5ET1 56 3410 T123 a0 2661 2159
23 35885 5910 T 3391 T157 91 2637 21806
24 J8TH 5045 b5 3372 7190 92 2613 8212
25 J867T GORT 50 3352 7224 03 2580 8238
26 3357 6026 60 3332 T25T 04 2565 2264
27 3547 G064 61 3312 7291 95 2541 &289
25 3536 6103 G2 3202 7324 06 2510 2315
20 3825 6141 63 3271 7357 7 2492 2340
30 3514 6179 64 3251 TR0 05 2468 2365
31 3502 6217 G5 3230 T422 99 2444 £3589
32 3790 6265 66 3207 7454 1,00 2420 2413
33 ITTR 6203 T J187 T4RG6 1,01 2306 2438
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T plx) Pix) T ¢lx) b(x) r P(z) ()
1,02 | 0,2371 | 0,8461 || 1.42 | 0, 1456 [ 0,9222 || 1,82 | 0,0761 | 0,9656
03 2347 2455 43 1435 0236 a3 0748 0664
04 2323 2505 44 1415 0251 &4 0734 9671
05 2299 2531 45 1394 0265 a5 0721 0678
06 2275 2554 46 1374 0279 26 i O6RG
a7 2251 BRTT T 1354 0292 T 0604 0693
03 2227 55949 45 1334 0306 batal 0681 06499
Y 2203 2621 49 1315 0319 29 0669 a706
10 2179 B648 50 1295 0332 a0 0656 o713
11 2155 B665 51 1276 0345 a1 0644 0714
12 2131 2686 52 1257 0357 92 0632 g7249
13 2107 2708 53 12358 0370 93 0620 a732
14 2083 2720 54 1219 03582 04 OG0= 0738
15 2059 2749 55 1200 0394 a5 0596 0744
16 20346 Yili 56 1122 0406 a6 0524 8750
17 2012 TO0 T 1163 0415 7 0573 0756
18 19859 BE10 58 1145 0420 OH 0562 0761
19 1965 =520 50 1127 0441 a9 0551 O7a7
20 1942 5849 60l 1109 0452 2,00 0540 07T
21 1919 betetite] 61 1092 0463 02 0519 O7s3
22 1505 BEAR 62 1074 0474 04 0498 O7a3
23 1572 2007 63 1057 0454 06 0478 0=03
24 1549 2925 G 1040 0495 05 0459 0512
25 1526 2044 65 1023 0505 10 0440 0821
26 1504 2062 66 1006 0515 12 0422 0830
27 1551 2080 I 00924 0525 14 0404 0538
28 1558 29497 65 0973 0535 16 0387 0546
29 1536 9015 69 0957 0545 18 0371 0854
30 1714 032 K 0940 0554 20 0355 OE61
31 1691 G049 ¥ 0925 0564 22 0339 OHGS
32 1669 9066 P 0909 0573 24 0325 0868
33 1647 9052 T 0203 0583 26 0310 Oss1
34 1626 G099 T4 0878 0591 28 0297 OERT
35 1604 9115 T 0363 05949 a0 0283 0293
36 1582 9131 T 0845 O60s 32 0270 0898
3T 1561 9147 T 0833 0616 34 0258 0904
38 1539 0162 T8 0818 0625 a6 0246 0909
34 1518 9177 70 0504 0633 35 0235 0913
40 1457 9192 bl a0 0641 40 0224 991=
41 1476 9207 &1 TS 0649 42 0213 0922
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r Jolx) [B@ [z [o@ %@ [z [é@ [b@)

2,44 [ 0,0203 | 0,9927 | 2,72 [ 0,0009 | 0,9967 | 3,00 | 0,0043 0, 99655
46 0194 0931 T4 0093 09469 10 0110 99903
45 0184 0034 Th 0085 0971 20 0104 09031
50 0175 0038 Ta 0024 0973 30 0099 99051
h2 0167 9941 a0 0079 0974 40 0093 99966
54 0158 09945 22 0075 0976 50 D0&R 90076
56 0151 0048 24 0071 0077 60 D0&4 00054
58 0143 9951 26 0067 aa7a T 00042 99059
G0 0136 9953 28 0063 990 &0 00029 99993
62 012G 9956 a0 0060 001 G0 00020 999095
64 0122 0959 92 0056 0052 4,00 00013 90006
66 0116 0061 04 0053 0054 4,50 o001 90000
65 0110 9963 96 0050 0085 5,00 00000 99999
T 0104 9965 95 0047 0956

Table 1 contains the values of density function ¢ and of distribution function € of the
standard normally distributed random variable in interval [0.5]. To caleulate the values of

@ and P in other points of the real axis we can use the following formulas:

B(x) =

P(r) =

0, if ==5

olz),

pl—x), if =z [-5;0[(we find
0, if =< —h
1, it =5

B(z),
1- "i"l:—l“_:l,

a, it x< —5.

if =€ [0;5] (wefind ¢(x) from Table 1};
@ —z) from Table 1);

if re[0:5] (wefind $(z) from Table 1);

if xe[-5;0[(we find #{—=x) from Table 1);

The value of function &1 is defined by

& 1(a) =

{

®~Yaj,
_@_1(1 - a,:l'i

if ael[0,51] (wefind 27Ya) from Table 1);
if @ €]0;0,5[ (we find 711 — a) from Table 1.
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Table 2. Poisson Distribution

kA | 0,1 0,2 0,3 0,4 0,5 0,6
0 | 0,904837 | 0,818731 | 0,740818 | 0,670320 | 0,606531 | 0,548812
1 090454 163746 222245 263120 303265 320287
2 D04524 016375 033337 053626 ToR1G 0O9=TS6
3 000151 0011091 003334 DO7150 012636 019757
4 000004 000055 000250 000715 001580 002564
5 000002 000015 000057 0D0LES 000356
i 000001 000004 000013 000035
T 000001 000003

kA [ 0,7 0,8 0,9 1,0 2,0 3,0
0 | 0,496585 | 0,449320 | 0,406570 | 0,367879 | 0, 135335 [ 0,049787
1 347610 350463 365913 367ETH TOGTL 149361
2 121663 143785 164661 183040 TOETL 224043
3 O2E388 038343 049308 061313 180447 224042
4 004065 007669 011115 015328 000224 168031
5 DO0G95 001227 002001 003066 036059 100815
i 0000s1 DO0L65 000300 000511 012030 050400
T O0000E 000019 000039 000073 003437 021604
5 0o0003 000004 000009 000z 0o=101
9 000001 000191 002701
10 000035 00D&10
11 0ooooT 000221
12 000001 000055

kA | 4,0 5,0 6.0 7,0 2,0 9.0
0 | 0,018316 | 0,006735 | 0,002479 | 0,000912 | 0,000335 (| 0,000123
1 073263 0336490 014873 DDG3R3 002684 oo1111
2 146525 034224 044618 022341 010735 0049593
3 195367 140374 DE9235 052126 025626 014994
4 195367 175467 133853 091226 057252 033737
b 156203 175467 160623 D277T1T 091604 060727
i 104194 146223 160623 1405003 122138 091090
T 059540 104445 137677 149003 139587 117116
5 028770 D65275 103258 130377 130587 131756
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kA | 4,0 5,0 6,0 7,0 8,0 9,0
9 013231 036266 | 068E08 101405 | 124077 131756
10| D05292 018133 | 041303 070033 | DHO262 118085
11 001925 008242 | 022529 045171 072190 | 097020
12| 000642 003434 | 011262 026350 | 048127 | 072765
13 | 000197 001321 | 005199 014188 | 020616 | 050376
14 | DO0D56 000472 [ 002228 007094 | D16924 | 032384
15 | 000015 000157 | 0DOEO1 003111 D0D026 | 019431
16 | 000004 000049 [ 000334 001448 | DO4513 | 010930
17 | 000001 000014 | 000115 D00596 | 002124 | 005786

1% 000004 [ 0DZE5H9 000232 | DO0D944 | 000944
19 000001 | 000012 D0D0OSE | 000397 | 001370
20 000004 000030 | 000159 | 000617
21 000001 000010 | 000061 | 000264
22 000003 | DO0022 | 000108
23 000001 D0O00S | 000042
2 000003 | 000016
25 000001 | 000006
26 000002
a7 000001
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Test answers

N a|b d || N a|b|lg|d|N alblg |d
1.1.1) 3.8.4) + 5.3. +
20+ 5) || + 6.1.1) +
3) |+ 6) + 2) +
4 + 3.0. + 3) |+
5) 3.10. + 4 | +
) + 3.11.1) || + 65.2.1) +
1.2.1) + 2) + 2y |+
2) + 3.12. + 3 |+
3) 3.14. + 6.3.1) +
4) + 3.15. + 2 || +
1.3.1) 3.16. + 3] +
2) + (| 3.17. + 7.1.1) +
1.4.1) 3.18 + 2) +
2) 3.19. + 3|+
1.5.1) + 3.20. + 4) || +
2) + || 3.21. + 5) +
2.1. 3.22. + 7.2, +
2.2, + 3.23. + 7.3, +
2.3. + (| 3.24. + 7.4 +
24, + 4.1. + 7.5 +
2.5. + 4.2, + 7.6. +
2.6. + 4.3. + 7.7 +
2.7. + 4.4. + T.8.1) +
3.1. + 4.5.1) + 2y |+
3.2, + 2 |+ 7.9.1) +
3.3. + 4.6.1) + 2) +
3.4 2) + 3 |+
3.5.1) + 7. + T.10.1) | +
2) 4.5.1) + + 200+
3) 2j + 8.1.1) +
4) + 5.1.1) + 2) +
3.6. + 2} + 5.2.1) +
3.7 + 3| + 2 +
3.8.1) + 4} + || 5.3.1) +
2) 5.2.1) + 2) +
3] iy + 85.4.1) +
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Some Statistical Functions of

7 Excel”

m D00 U W

== = = e
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| e e e
= W= O o G

page 45 —- PROB(xy @z 2 palin: 2.
page 46 — POISSON(E; A; 0).
page 46 — POISSON(E; A; 1).

page 48 - HYPERGEOMDIST(k; n; a: A).

page 48 — BINOMDIST(E;n; p; 0).
page 48 — BINOMDIST(E;n;p;1).
page 50 — NORMDIST(z;m; a; 0).
page 50 — NORMDIST(z;m; 0; 1).
page 51 — EXPONDIST (x: A;0).

. page 51 - EXPONDIST(x; A;1).

. page 57 — SUMPRODUCT.

. page 71 - AVEBAGE(x, : z,,).

. page 71 — VARP(zy : =),

cpage 71 — VAR(x @ 2,0,

. page 73 — CORREL(x1 : wni 01 Un ).
. page 73 — COVAR(zy t 2011t Un ).
. page 77 — KURT (2, : x,).

. page 77 — SKEW (2, @ 2,,).

. page 78 — MEDIAN(=, : z,).

. page 78 — MODE(z, : =,).

. page 86 — CHIDIST (x, n).

. page 87 — TDIST |z, n,1).

. page 87 — TDIST (>, n, 2).

. page 87 — FDIST [z, by, k2).
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