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Abstract

The spatially distributed multi-agent systems must yield coordinated behavior from
individually autonomous actions. The movements of the particles around in the search-space are
guided by their own best known position in the search-space as well as the entire swarm’s best
known position. The main   claim of this paper is that the relation between self-organization in
multi-agent systems and entropic concepts which can provide quantitative, analytical guidelines
for designing and operating agent systems. We explain the link between these concepts by way of
a simple suggestion how they can be applied in measuring the behavior of multi-agent systems. In
this paper we have discussed different kind of metrics to robotic groups behavior such as order and
entropy, which will help us in evaluation of performance of the swarming behavior.
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1. Introduction
Multi-mobile sensor systems are reconfigurable wireless networks of distributed

autonomous devices that can sense or monitor physical or environmental conditions
cooperatively. Swarm intelligence is an exciting new research field still in its infancy compared to
other paradigms in artificial intelligence. The movements of the particles around in the search-
space are guided by their own best known position in the search-space as well as the entire
swarm’s best known position. Particle swarms are attractive to the user as they do not require
gradient and derivative information, are intuitive to understand and can be parallelized [1].
Particle swarm optimization (PSO) is a promising new population based optimization technique,
which models a set of potential problem solutions as a swarm of particles moving about in a virtual
search space.

2. Problem formulation
According to the literatures overview, it’s easy to know that the canonical PSO model

consists of a swarm of particles, which are initialized with a population of random candidate
solutions. Each particle has a position represented by a position-vector ix (i is the index of the

particle), and a velocity represented by a velocity-vector iv [2].

The swarm is defined as a set:  NxxxX ,,, 21  , of N particles or individuals (candidate

solutions), defined as:

NiAxxxx T
iniii ,,2,1,),,,( 21   (1)

where A is the searching space.
The particles are assumed to move within the search space, A, iteratively. This is possible by

adjusting their position using a proper position shift, called velocity, and denoted as:

Nivvvv T
iniii ,,2,1,),,,( 21   (2)

Velocity is also adapted iteratively to render particles capable of potentially visiting any
region of A. If t denotes the iteration counter, then the current position of the i-th particle and its
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velocity will be henceforth denoted as )(txi and )(tvi , respectively. Velocity is updated based on

information obtained in previous steps of the algorithm.
This is implemented in terms of a memory, where each particle can store the best position it

has ever visited during its search. For this purpose, besides the swarm, X, which contains the
current positions of the particles, PSO maintains also a memory set:

 NPPPP ,,, 21  (3)

which contains the best positions:

NiAPPPP T
iniii ,,2,1,),,,( 21   (4)

ever visited by each particle.
These dynamic parameters are defined as:

))(())(()()1( 2211 txPrctxPrctvtv ijgjijijijij  (5)

)1()()1(  tvtxtx ijijij (6)

njNi ,,2,1,,,2,1  

where: t stands for the iteration counter;

1r and 2r are random variables uniformly distributed within [0,1];

1c , 2c are weighting factors, also called the cognitive and social parameter, respectively.

At each iteration, after the update and evaluation of particles, best positions are also
updated. Thus, the new best position of ix at iteration t+1 is defined as follows:



 


otherwisetP

tPftxfiftx
tP

i

iii
i ),(

)),(())1((),1(
)1( (7)

The presented approach is a distributed algorithm that partitions the supply chain network
into  a set of locally clusters. This is achieved by deriving a set of weight coefficient or estimation

of effectiveness ild between every pair of subtask lT ),1( Ml  and  agent iA , ),1( Ni 
within the locality of each subset for selecting the best node of its neighborhood to become its
leader. We envisage every the values of decision or management )(tDi as the “velocity” of each

particle in given iteration. Moreover, the each pace is varied inversely of particular velocity.
The fundamental claim of this paper is that the relation between self-organization in multi-

agent systems and entropic concepts which can provide quantitative, analytical guidelines for
designing and operating agent systems. We explain the link between these concepts by way of a
simple suggestion how they can be applied in measuring the behavior of multi-agent systems.

3. Metrics in robot swarm control. Brief overview
We are interested in having a cohesive of robot swarm that aligns to a common direction in

a given time. In this section we review some approaches to estimate the robot swarm control that
can be used to evaluate coherence of the multi-robot system. Entropy, order, and average angular
velocity metrics can be defined to measure the alignment, positional order and energy
consumption of the group, respectively. The average forward velocity metric is also utilized as a
secondary measure of the energy consumption, and is more convenient to use in some cases.

We can define state, and thus entropy, in terms either of location or direction. Location-
based state is based on a single snapshot of the system, while direction-based state is based on how
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the system has changed between successive snapshots. Each approach has an associated gridding
technique. Our approach participates to this caveat.

Entropy-based metrics in robotic control. Entropy measures the positional disorder of the
swarm. Entropy is used in a number of classical approaches to clustering, as a means to drive the
clustering process. This metric is calculated by finding every possible cluster combination, finding
Shannon’s information entropy of these clusters and then sum them up [3].

Several approaches in metrics are directly applicable to the problem of swarm clustering.
They include the entropy (S) measures as the positional disorder of the swarm [4]. It is calculated
by finding every possible cluster via changing the maximum distance (h) between the position
vectors of robots in a same cluster. Shannon’s information entropy H(h) of a cluster with a
maximum distance h is defined as:





K

k
kk PPlH

1
2 )(log)( (8)

Where kP is the proportion of the individuals in the k-th cluster and M is the number of clusters

for a given h. The rate of change of the entropy (dS/dt) is considered as metrics. These entropy
values are integrated over all possible h’s ranging from 0 to ∞ to find the total entropy (S):





0

)( dllHS (9)

The angular order. The order (coherence or synergy) measures the angular order of the sensors [5].





M

k

i ke
M

t
1

1)(  (10)

Where M is the number of sensors in the cluster and k is the heading of the k-th sensor at time t.

Swarm order can be estimated by the value between 0 and 1 and is calculated by collecting
the heading value of the distributed sensors. When the group in an ordered state, the order
parameter approaches to 1, and inversely, when the group is unaligned, the system is in a
disordered state and the order parameter is close to 0.

The swarm velocity as metrics. This metric, which is the average velocity of the geometric
center of the swarm during the whole course of its motion, can be calculated by dividing the
displacement of the geometric center of the swarm by the duration of flocking.



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is tV

N
tV

1
)(1)(


(11)

4. Proposed approach
Based on this brief review of metrics to evaluate the quality of mobile sensor swarm

behavior, we argue that entropy of swarm cluster, as degree of disorder, can be also calculated
using relative positions or average angular velocity by collecting the heading value of the sensors.
Further, they will be utilized in comparing the performance of different behaviors achieved
through setting controller parameters or sensing characteristics to different values than the default
ones. We consider the entropy of dynamic system as an internal behavioral incompatibility or
antagonism, certain contradiction between disoriented components behavioral vectors [6]. Hence,
the robot swarm behavior metric, which consists in estimation of disoriented robot behavioral
vectors can be derived as below.
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This approach is based on vector algebraic addition of the velocity-vectors )(ti


of mobile
robots at time t. Metric of whole robot group in time t can be measured as:


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entropiaze dafuZnebuli metrika robotebis

jgufis marTvaSi

badri mefariSvili, petre petaSvili, gulnara janeliZe

saqarTvelos teqnikuri universiteti

reziume

sivrculad ganawilebuli multi-agenturi sistemis qceva individualuri avtonomiuri

qmedebebiT aris ganpirobebuli. saZiebel areSi nawilakebis moZraoba ganisazRvreba maTi saukeTeso

poziciiT, romelic imavdroulad mTliani sistemis saukeTeso poziciasac ganapirobebs. statiaSi

warmodgenili midgoma adgens garkveul raodenobriv Tanafardobas TviTorganizebisa da entropiul

cnebebs Soris, romlebic SeiZleba gamoyenebul iqnas multi-agenturi sistemebis qcevis Sefasebis

TvalsazrisiT. statiaSi ganxilulia robotuli jgufebis qcevis sxvadasxva saxis metrika, maT

Soris mowesrigebuloba da entropia, rogorc qaoturobis zoma.

ОСНОВАННАЯ НА ЭНТРОПИЮ МЕТРИКА В УПРАВЛЕНИИ
ГРУППОЙ РОБОТОВ

Мепаришвили Б., Петашвили П., Джанелидзе Г.
Грузинский Технический Университет

Резюме

Поведение пространственно распределенных мульти-агентных систем обусловлено
индивидуальным автономным поведением. Перемещение частиц в поисковом пространстве
оценивается собственной найлучшей позицией,  которое обусловливает найлучшую позицию
системы в целом. В статье представленный подход установливает определенное количественное
соотношение между понятиями самоорганизации и энтропией, что может бить применен для оценки
поведения мульти-агентных систем. С этой точки зрения, в качестве метрики поведения группы
роботов  в работе рассмотрены упорядоченность, а также энтропия, как мера хаотичности.


