Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

GENETIC ALGORITHM AND UNIVERSITY TIMETABLE PROBLEM

B. Midodashvili*, L. Midodashvili®, P. Midodashvili®
1-1. Javakhishvili Thilisi State University
2-Gori University, Georgia.

3- llia State University, Thilisi

Summary

Scheduling university timetable is a complex NP-hard problem, which is usually done “by hand”, taking
several days of routine work. There are known many attempts to solve this problem using classical methods, such as
integer programming and graph theory algorithms. These methods are inconvenient to algorithmize the process of
solution. We offer a solution to this problem using appropriately configured genetic algorithm. The program
presented by authors, using real university data stored in a SQL database, successfully solves the university timetable
problem.

Keywords: genetic algorithm. Timetable problem. Optimization. Computer program.

1. Introduction

Timetable problems occur in cases when certain resources must be specifically allocated to time period slots
(airport terminal and railroad station scheduling, conference timetabling, job scheduling, etc.). University timetable
problem is a problem of assigning courses to time periods and to rooms, satisfying various constraints and objectives.
In general, the constraints may be hard constraints, i.e. conditions which must be necessarily fulfilled, or soft
constraints, i.e. conditions which satisfaction can be assumed as expectations.

Timetable problems belong to a class of combinatorial type NP-hard constrained optimization problems,
which main goal is to satisfy all problem constraints, rather than optimizing a certain objective [1]. Automated
algorithm of the solution of timetable problems is of great importance, as it can save a lot of work to institutions and
companies.

Many authors have proposed different methods for solving timetable problems. These methods come from
such scientific disciplines as Operations Research, Artificial Intelligence and Computations and they can be divided
into four categories [2]:

e Sequential Methods: graph problem method of ordering of events using domain-specific heuristics without
constraint violations.

e Cluster Methods: constructing event sets satisfying the hard constraints as well as soft constraints which are
then assigned to real time slots.

e Constraint Based Methods: modeling the problem into a set of variables (events) to which values (resources
such as teachers and rooms) are assigned by satisfying a number of constraints.

e Meta-heuristic methods: nature-inspired processes such as genetic algorithms (GAs), simulated annealing,
tabu search, and other heuristic approaches that are applied to solutions or populations of solutions, in order
to evolve them towards optimality.

As the authors of work [3] report, while various methods like tabu search, simulated annealing, network flow,
graph coloring, etc, have been on the play, genetic algorithms prove more effective in solving timetable optimization
problems.

2. Genetic algorithm

Genetic Algorithm (GA), developed by John Holland [4], is a robust and efficient search and optimization
techniques inspired by the Darwin’s theory of natural evolution; the original goal for the research was to explain the
adaptation of natural systems and to design artificial system that retains mechanism of natural systems.

The evolution process in the genetic algorithm is done with a population of individuals represented by
chromosomes, parameters encoded to the string, bits or other data representation.

Since the first population does not have the final or “good enough” solution, there is a need for keeping an
artificial diversity in the population. Diversity can be maintained by using the crossover and mutation operations.

The crossover in the natural evolutionary process means that child will inherit its properties (genes) from its
parents. In genetic algorithms, the crossover operation is needed to mix and inherit good gene combinations from the
current population to the new population.

The mutation is performed by applying a random change to the individual’s chromosomes. A mutation
usually affects only few genes.

Usually the genetic algorithm performs with the following cycle:

1. Evaluate the fitness value for all the individuals in current population.

341

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

2. Create new population by using crossover; mutation and reproduction operations.
3. Discard the old population and continue iteration.

3. Implementation of the genetic algorithm for university timetable problem
The objects of the offered genetic algorithm consist of the following:
e Professor - with ID and the name.
Students Group - with 1D and the number of students (size of group)
Classroom - with ID and the name of the classroom, as well as the number of seats and information about
equipment (computers).
Course - with ID and the name of the course.
Subject - with ID and the name of the subject.
Class - with a reference to the subject and course to which the class belongs, a reference to the professor
who teaches, and a list of student groups that attend the class. It also stores how many seats (sum of student
groups’ sizes) are needed in the classroom, if the class requires computers in the classroom, and the duration
of the class (in hours).

We consider only hard constraints consisting of the following:

e Aclass can be assigned to a free room.

e No professor or student group can have more than one class at a time.

e Aroom must have enough seats for all students.

e The room must have equipment (computers) if the class requires it.

If the total number of classes is L, then a chromosome for a class schedule is represented by hash-table with L
items, where for each item the key is the Class ID (integer from 1 to L) and the value is the number of the time-space
slot in the vector, to which belongs the first hour of this class (integer from 1 to working_days * number_of _rooms *
classes_per_day).

The fitness of the chromosome is calculated as follows:

e Each class can have 0 to 8 points.

e Ifaclass uses a free room, we add 1 to its score.

e Ifaclass requires equipment and the room assigned to is equipped, we increment the score of the class.

e Ifaclassis located in a room with sufficient number of seats, we increment its score.

If a professor has no other classes at the time, we increment the class’s score.
If any of the student groups that attend the class has no other class at the time, we increment the score of the
class.

e If duration of the class is one hour or all time-space slots of the class with duration exceeding one hour are

allocated in one working day, we increment the score of the class.

o If preferred room of the class is not pointed or if it coincides with preferred room, we increment the score of

the class.
o If preferred University Building of the class is not pointed or if it coincides with preferred University
Building, we increment the score of the class.

e The total score of a class schedule is the sum of points of all classes.

e The fitness value is calculated as schedule_score/maximum_score, where maximum_score is
total_number_of classes * 8.

The fitness value is in the range 0 to 1.

A crossover operation combines data in the hash-tables of two parents, and then it creates a new hash-table. A
crossover 'splits’ hash-tables of both parents in parts of random size. The number of parts is defined by the number of
crossover points (plus one) and in our case it is 2. Then, it alternately copies parts from parents to the new
chromosome.

A mutation operation takes a class randomly and moves it to another randomly chosen slot. The number of
classes which are going to be moved in a single operation is defined by the mutation size and in our case it is 2.

For each generation, consisting of N=100 chromosomes, the algorithm performs the next operations:

1. Selects N/5 best chromosomes of the population.

2. Randomly selects N/5 pairs of parents from the current population, produces N/5 new chromosomes by

performing a crossover operation on the pair of parents and replaces randomly selected N/5 not best
chromosomes in population.

342

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

3. N/5 times randomly selects 2 pairs of parents from the best chromosomes of the population, produces new
chromosome by performing a crossover operation on the pair of parents and replaces randomly selected not
best chromosome in population

4. Randomly selects N/5 chromosomes from remaining chromosomes, performs mutation with mutation
size=2 and replaces randomly selected N/5 not best chromosomes in population.

The algorithm is repeated until the best chromosome reaches a fitness value equal to 1.

4. Conclusions

The algorithm described above has been applied to the program written in VB.NET using university data
stored in a MS SQL 2008 database and successfully tested with different parameter values. In contrast to known to
us works, together with best chromosomes in each generation we necessarily retained their offspring (operation 3 of
the algorithm). This circumstance is a certain analog of natural evolution of natural systems. As experiments showed
this approach sharply decreases a number of generations needed for receiving a solution.

Genetic algorithms appear to find a good solution for university timetable problem, however the rate of the
algorithm highly depends on the way the problem is encoded and which crossover and mutation methods are used.

References:

1. Brailsford S.C., Potts C.N., Smith B.M. Constraint satisfaction problems: Algorithms and applications.
European Journal of Operational Research, vol. 119, 1999. pp. 557-581

2. Kazarlis S., Petridis V., Fragkou P. Solving University Timetabling Problems Using Advanced Genetic
Algorithms. Proc. 5th Int. Conf. on Technology and Automation, Thessaloniki, Greece, 2005, pp. 131-136

3. Nandhini M., Kanmani S., Gilbert S., Theepan S., Venkatesan K. Automated Course Timetabling Using
Gam-6. Intern. Conf. On Information Science And Applications, ICISA 2010, India, 2010

4. Holland J. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor. 1975.

3J6dGN3IAH0 SL3MSH00)IN LS TF603I6HLOGIGNL LAOLYS3RM CGLAHOLOL 3AMdIS
b0dobys 80ng¢'330@01, 336 8oggmgo?§30g{>02, 3. 80Qm;g¢'830QO3
l-03. xs33b0d30m0l bsb. mdogmoliol LsbgmadFogem gbozg@lodgdo,
2-8(‘00/0015 160396 bod)gd0, 3-0@0&1} LsbgemdGogm mbogg@bodgdo
ébomdg

160396 boBgB ol LolbFegmm bGomols Bgoaqgbs §omdmswgqbl NP-ﬁ)mﬁQv 36mdgdsl s dolo gopsgs,
B3gnmgdtog, bed(z0gmegds ,,8gmostemgdgemo bgmom”, @3 dmoobmgl seoy Bsbdmgemy ©sdsdmen IBmds.
(36m30mos s@b0dbmo 3OMdmgdol gmsbogn®o dgmmegdol gsdmggbgdom assyzgdol sMsgemo Izgmmds,
333653 slgmo dgomegdo s¢ss Imbebg@badgmo 3dmblbol domgdol 3Gm(3glol sgmamGomdobszoobsmgals. sz m®gdals
dog6 [odmmagbormos 3Gmg6sds, Gmdgmo 0ggbgdl Ggondo qbogzgdloggBol Ms SQL dmbszgdms dsbs8o
Fgbsbyem Imbs(39990L s GoMmdsgdomn Fyzadl mboggdloBgdol Lebfsgmm bGomals 3Omdegdsls.

FEHETUYECKWUA ANNTOPUTM U 3AJAUA COCTABJIEHVA PACTIMCAHUA 3AHATUIA B
YHUBEPCUTETE
Mwugogawsunun b.', Mugogawsunu JI.2, Muaogawsunm .3
1-Tounuccknii MFocyaapcTBeHHbI YHUBEpCUTET UM. VB.[p)KaBaxmLLBUIIK,
2-I"opwuiickunidi YHuBepcuTeT, pysus
3-'ocyaapCTBEHHbI YHMBEPCUTET UM. Vinbn, Touamcu

Pe3tome

3afaya cocTaBneHUs pacnucaHus 3aHATUIA yHuBepcuTeTa ABnseTca NP-CNoXHON 3afjaveit, koTopas 06bl4HO
BbINOMHAETCS "BPYYHYIO", 3aHUMasi HECKONbKO AHEN PYTUHHON paboTbl. 3BECTHbI MHOrME MOMbITKU pa3peLlnTb
3Ty 3a7a4y C UCMOb30BaHMEM K/aCCUYECKMX METOLOB, TaKMUX KaK LiefIo4MC/IeHHOE NporpaMMmMpoBaHne UM Teopus
rpadoB. 3TV METOAbI HEYAOOHbLI C TOUKM 3PEHMS aTOPMTMU3aLMM NpoLecca pelleHns. Mbl npegfiaraem peLueHve
3TOM 3afla4yM C MCMOJ/Ib30BAHWEM TFEHETUYECKOrO anropMTMa KOH(MIryprpoBaHHOrO COOTBETCTBYHOLMM 06pasoM.
Mporpamma, NpefcTaBneHHas aBTopaMu, UCMOMb3ys peasbHble AaHHbIE YHUBEPCUTETA, KOTOpble XpaHATCA B 6ase
AaHHbIX Ms SQL, ycrneLHO peLaeT 3afady pacnucaHns 3aHaTUin yHuBepeuTeTa.

343

