
Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

170

TYPICAL TEMPLATE VERIFICATION FOR LIST EDITING IN HASKELL LANGUAGE

Archvadze Natela1, Nizharadze Mziana2

1-Ivane Javakhishvili Tbilisi State University,
2-Georgian Technical University

Summary
Programming language Haskell represents a functional language and it has all the characteristics that

defines functional paradigm. In the functional paradigm of programming, methods used for building data
structure gives ability to create simultaneously templates of typical functions to edit these structures. The classic
module of language Haskell defines template of the function for editing lists. Our goal is following: the
algorithm that we have used for Lisp functional programs to use for the Haskell typical template as well. This
paper describes the method for structural induction that is used for verification of those Haskell programs that
can present functions for editing lists.

Keywords: functional programming. Program verification. Structural induction method

1. Introduction
Programming language Haskell represents a functional language and it has all the characteristics that defines

functional paradigm. We can list following major characteristics of functional languages: a) simplicity and
shortness, b) strict standardization, c) module characteristics, d) functions as values and calculation object, e)
absence of side effects and indeterminacy, f) lazy calculations. Typical tasks that are solved using functional
programming methods include the tasks for dynamic structure descriptions and automatic construction of
programs and verification for given structures. We will describe these structures using Haskell language and
compare with Lisp language capabilities [1].

2. Automatic construction of major part of the program according to
the data structure description

Given example is related to typical example for describing dynamic structure of data. The latter is solved not
only by means of functional programming, but in other paradigms it is very complicated to construct the major
part (unity of functions) of the program for editing certain data structures.

The methods used to build data structure in functional paradigm of programming gives ability to create
typical function templates for editing these structures. Therefore, syntax oriented construction has capability to
build automatically certain function descriptive foundation for constructed data types that will be used to edit
corresponding data types. These foundations can be discussed as templates that will complete necessary
functionality. The general construction of this template remains unchanged, only the content changes that
depends on the function requirements defined by the user's target.

Only functional languages are characterized by building functional templates for editing data structure.
Let's consider a data structure as an example where the list of A type elements is given and let's represent it

by using syntax oriented construction method. This method constructs data types by two simple operations –
decartian product and unification. The structure "list" will be defined as follows [2]:

List(A)=NIL + (A  List (A))
prefix=constructor List(A)
head,tail=selector List(A) (1)

isNil, isNonNil=predicate List(A)
nil, nonNil=parts List(A)

The syntax oriented construction method was introduced by British mathematician Charles Hoaro. He
introduced the meta language that is able to describe data structure of any complexity, even the ones that are
defined recursively using itself as well.

This method gives ability not only to edit dynamic structures of data, but to solve the task to create
automatically data editing function templates as well. It is also used to solve another typical task of functional
programming – to prove the function characteristics.

For the given definition formula (1) is necessary to build the typical function that will make the function
List(A) work. The standard module - Prelude [2] of Haskell language defines function template to edit lists.

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

171

The typical function template that edits lists (it is assumed that the function takes one argument – the list at
the beginning) has the following form:

f [] = g1 []
f (x : xs) = g2 (g3 x) (g4 (f (g5 xs))) (2)

In the formula given, g1, g2, g3, g4, g5 functions represent those functions that are dependent on the goals of the
task: g1 is a function to edit empty list, g2 is a function that unifies the results of function's head and tail editing,
g3 is a function that edits the head of the list, g4 is a function that edits recursive call of the non-empty list tail,
g5 is a function that edits in advance the tail of the non-empty list before the recursive call.

3. Generalized form of programming language Lisp

[4] discusses the forms of abstract programs in programming language Lisp that enables to edit lists. One of
the forms has the following form:

(DEFINE FUN(F F0.L)
(COND((MEMBER NIL L)a) (3)

(T(g(f(M F L))
(APPLY 'FUN(CONS 'F(CONS 'F0(M F0 L))))))))

[5] describes the verification algorithm for functional languages. It shows how to prove by means of
structural induction method.

Formula (3) resembles the definitions given by formula (1). Our goal is to use the algorithm that was used
for Lisp functional program also for formula (1) in order to prove its verification. It is worth mentioning, that
Lisp program edits lists.

4. Verification of typical template

Let us prove the verification of the equation described with formula (2) by using structural induction
method.

Structural induction method is used for such type of recursive functions which has structures, not
numbers, as arguments. The correctness of this type of program can be proved as follows:

1. Let's prove that the program works correctly for simple data (function arguments).
2. Let's prove that the program works correctly for more complicated data (function arguments) with the

assumption that it works well for simpler data (function arguments).
For verification of formula (2) we will assume that the induction is conducted in accordance with list

length; in other words, we assume that the function's argument is "simple" if it contains less elements than the
"complicated" argument. Let's assume that g5 function is equality. Analysis of the function shows that f
function's recursive directing - f(g5 xs) on the right side is more simple because the argument is the result of g5
function's interaction on xs list that has one less element than the original list (x:xs) as its first element was
excluded.

The proof is as follows:
1. Let's prove that for any list with 0 elements, function f works correctly. Truly, f[]=g1[]. In general, g1

function, that edits empty list is an equality function; in other words, it returns empty list as a result from the
empty list: f[]=[]. That's what we wanted to show.

2. Let's prove that f function works well for lists with N elements (on upper level): L=(x:xs). Then it will
work correctly for all lists L1=(x1 : xs1) that has N+1 elements on upper level. The induction hypothesis is as
follows:

f (x : xs) = g2 (g3 x) (g4 (f (g5 xs1)))
Let's write non-zero part of formula (2) for L1 list that has N+1 elements:
f (x1 : xs1) = g2 (g3 x) (g4 (f (g5 xs1))).
Here, xs1 is a list with N elements as it is derived from L1 list by excluding the first element. It is

influenced by function g5 that edits in advance L1 tail before the recursive calling. Then f (g5 xs1) is called
recursively. Often g5 function is equality but it does not have a value because xs1 is already a list with N
elements for which the f function works correctly by induction hypothesis. That's what we wanted to prove.

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

172

5. Conclusion

The given research describes the structural induction method that is used for Haskell program verification
and that can be used to derive function for editing lists.

References:

1. Archvadze N., Shetsiruli L.. Programing Language Lisp. Publisher "Universal" Tbilisi, 2008
2. Dushkin R.V. Functional Programming in Haskell Language. Moscow. Publish.DMK, 2007
3. Dushkin R.V. Guide of Haskell Language. Moscow DMK, 2008.
4. Archvadze N., Pkhovelishvili M., Shetsiruli L. Construction of generalized recursive forms for

functional languages and their application in program verification tasks. El. Scientific Journal: “Computer
Sciences and Telecommunications”, http://gesj.internet-academy.org.ge , 2010, No. 3(26), pp. 133-141

5. Archvadze N., Pkhovelishvili M., Shetsiruli L., Nizharadze. A recursion forms and their verification
by using the inductive methods. Computing and Computational Intelligence. Proceeding of the 3nd European
Computing Conference (ECC’09), Tbilisi, 2009, pp.357-361.

http://www.wseas.org/conferences/2009/tbilisi/Program.pdf
http://www.wseas.us/e-library/conferences/2009/georgia/CCI/CCI58.pdf

siebis damuSavebis tipuri Sablonis

verifikacia Haskell enisTvis

naTela arCvaZe1, mziana niJaraZe2

1-iv.javaxiSvilis sax. Tbilisis saxelmwifo universiteti,

2-saqarTvelos teqnikuri universiteti,

reziume

Haskell daprogramirebis funqcionalur enaa da axasiaTebs yvela is Tviseba, rasac

funqcionaluri paradigma gansazRvravs. programirebis funqcionalur paradigmaSi monacemTa

struqturis asagebad gamoyenebuli meTodikebi saSualebas iZleva paralelurad Seiqmnas tipuri

funqciis Sablonebi am struqturebis dasamuSaveblad. Haskell enis standartul modulSi

gansazRvrulia funqciis Sabloni siebis dasamuSaveblad. Cveni mizania, verifikacikaciis is

algoriTmi, romelic gamoyenebul iyo Lisp-is funqcionaluri programebisTvis, aseve gamoviyenoT

Haskell enis tipuri SablonisaTvis. winamdebare naSromSi aRwerilia struqturuli induqciis

meTodi, romlis saSualebiTac moxda Haskell -is im programebis verifikacia, romlebiTac SeiZleba

siebis dasamuSavebeli funqciebis asaxva.

ВЕРИФИКАЦИЯ ТИПИЧНОГО ШАБЛОНА ОБРАБОТКИ СПИСКОВ ЯЗЫКА HASKELL
Арчвадзе Н.1, Нижарадзе М.2

1-Тбилисский Гос. Униветситет им. И.Джавахишвили,

2-Грузинский Технический Университет

Резюме
Язык программирования Haskell представляет собой функциональный язык, и его

характеризуют все те свойства, которые определяет функциональная парадигма. В функциональной
парадигме программирования примененные методы построения структур данных позволяют
параллельно создавать шаблоны типичных функций для обработки этих структур. В стандартном
модуле языка Haskell определен шаблон функции для обработки списков. Наша цель – примененный для
функционального программирования Лиспа алгоритм верификации использовать также для типичного
шаблона языка Haskell. В данной работе описан метод структурной индукции, с помощью которого
проведена верификация тех программ Haskell, которыми можно представить функции обработки
списков.

http://gesj.internet-academy.org.ge
http://www.wseas.org/conferences/2009/tbilisi/Program.pdf
http://www.wseas.us/e-library/conferences/2009/georgia/CCI/CCI58.pdf

