Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

TYPICAL TEMPLATE VERIFICATION FOR LIST EDITING IN HASKELL LANGUAGE

Archvadze Natela®, Nizharadze Mziana®
1-lvane Javakhishvili Thilisi State University,
2-Georgian Technical University

Summary

Programming language Haskell represents a functional language and it has all the characteristics that
defines functional paradigm. In the functional paradigm of programming, methods used for building data
structure gives ability to create simultaneously templates of typical functions to edit these structures. The classic
module of language Haskell defines template of the function for editing lists. Our goal is following: the
algorithm that we have used for Lisp functional programs to use for the Haskell typical template as well. This
paper describes the method for structural induction that is used for verification of those Haskell programs that
can present functions for editing lists.

Keywords: functional programming. Program verification. Structural induction method

1. Introduction

Programming language Haskell represents a functional language and it has all the characteristics that defines
functional paradigm. We can list following major characteristics of functional languages: a) simplicity and
shortness, b) strict standardization, ¢) module characteristics, d) functions as values and calculation object, €)
absence of side effects and indeterminacy,) lazy calculations. Typical tasks that are solved using functional
programming methods include the tasks for dynamic structure descriptions and automatic construction of
programs and verification for given structures. We will describe these structures using Haskell language and
compare with Lisp language capabilities [1].

2. Automatic construction of major part of the program according to
the data structure description

Given example is related to typical example for describing dynamic structure of data. The latter is solved not
only by means of functional programming, but in other paradigms it is very complicated to construct the major
part (unity of functions) of the program for editing certain data structures.

The methods used to build data structure in functional paradigm of programming gives ability to create
typical function templates for editing these structures. Therefore, syntax oriented construction has capability to
build automatically certain function descriptive foundation for constructed data types that will be used to edit
corresponding data types. These foundations can be discussed as templates that will complete necessary
functionality. The general construction of this template remains unchanged, only the content changes that
depends on the function requirements defined by the user’s target.

Only functional languages are characterized by building functional templates for editing data structure.

Let's consider a data structure as an example where the list of A type elements is given and let's represent it
by using syntax oriented construction method. This method constructs data types by two simple operations —
decartian product and unification. The structure "list" will be defined as follows [2]:

List(A)=NIL + (A xList (A))
prefix=constructor List(A)
head,tail=selector List(A) (1)
isNil, isNonNil=predicate List(A)
nil, nonNil=parts List(A)

The syntax oriented construction method was introduced by British mathematician Charles Hoaro. He
introduced the meta language that is able to describe data structure of any complexity, even the ones that are
defined recursively using itself as well.

This method gives ability not only to edit dynamic structures of data, but to solve the task to create
automatically data editing function templates as well. It is also used to solve another typical task of functional
programming — to prove the function characteristics.

For the given definition formula (1) is necessary to build the typical function that will make the function
List(A) work. The standard module - Prelude [2] of Haskell language defines function template to edit lists.

170

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

The typical function template that edits lists (it is assumed that the function takes one argument — the list at

the beginning) has the following form:

fl1=91[]

f(x:xs)=9g2(g3x)(g4(f(g5xs))) (2)
In the formula given, g1, g2, g3, g4, g5 functions represent those functions that are dependent on the goals of the
task: gl is a function to edit empty list, g2 is a function that unifies the results of function’s head and tail editing,
g3 is a function that edits the head of the list, g4 is a function that edits recursive call of the non-empty list tail,
g5 is a function that edits in advance the tail of the non-empty list before the recursive call.

3. Generalized form of programming language Lisp

[4] discusses the forms of abstract programs in programming language Lisp that enables to edit lists. One of
the forms has the following form;
(DEFINE FUN(F F°.L)
(COND((MEMBERNIL L)a) (3)
(Te(fM F L))
(APPLY 'FUN(CONS'F(CONS'F°(M F°L))))))))
[5] describes the verification algorithm for functional languages. It shows how to prove by means of
structural induction method.
Formula (3) resembles the definitions given by formula (1). Our goal is to use the algorithm that was used
for Lisp functional program also for formula (1) in order to prove its verification. It is worth mentioning, that
Lisp program edits lists.

4. Verification of typical template

Let us prove the verification of the equation described with formula (2) by using structural induction
method.

Structural induction method is used for such type of recursive functions which has structures, not
numbers, as arguments. The correctness of this type of program can be proved as follows:

1. Let's prove that the program works correctly for simple data (function arguments).

2. Let's prove that the program works correctly for more complicated data (function arguments) with the
assumption that it works well for simpler data (function arguments).

For verification of formula (2) we will assume that the induction is conducted in accordance with list
length; in other words, we assume that the function’s argument is "simple" if it contains less elements than the
"complicated" argument. Let's assume that g5 function is equality. Analysis of the function shows that f
function’s recursive directing - f(g5 xs) on the right side is more simple because the argument is the result of g5
function’s interaction on xs list that has one less element than the original list (x:xs) as its first element was
excluded.

The proof is as follows:

1. Let's prove that for any list with 0 elements, function f works correctly. Truly, f[]=g1[]. In general, g1
function, that edits empty list is an equality function; in other words, it returns empty list as a result from the
empty list: f{]=[]. That's what we wanted to show.

2. Let's prove that f function works well for lists with N elements (on upper level): L=(x:xs). Then it will
work correctly for all lists L1=(x1 : xsl) that has N+1 elements on upper level. The induction hypothesis is as
follows:

f(x:xs)=02(g3x)(g4(f(g5xsl)))

Let's write non-zero part of formula (2) for L1 list that has N+ 1 elements:

f(x1:xs1)=92(g3x) (g4 (f(g5xsl))).

Here, xsl is a list with N elements as it is derived from L1 list by excluding the first element. It is
influenced by function g5 that edits in advance L1 tail before the recursive calling. Then f (g5 xsl1) is called
recursively. Often g5 function is equality but it does not have a value because xsl is already a list with N
elements for which the f function works correctly by induction hypothesis. That's what we wanted to prove.

171

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

5. Conclusion

The given research describes the structural induction method that is used for Haskell program verification
and that can be used to derive function for editing lists.

References:

Archvadze N., Shetsiruli L.. Programing Language Lisp. Publisher "Universal” Thilisi, 2008
Dushkin R.V. Functional Programming in Haskell Language. Moscow. Publish.DMK, 2007
Dushkin R.V. Guide of Haskell Language. Moscow DMK, 2008.

4. Archvadze N., Pkhovelishvili M., Shetsiruli L. Construction of generalized recursive forms for
functional languages and their application in program verification tasks. El. Scientific Journal: “Computer
Sciences and Telecommunications”, http://gesj.internet-academy.org.ge , 2010, No. 3(26), pp. 133-141

5. Archvadze N., Pkhovelishvili M., Shetsiruli L., Nizharadze. A recursion forms and their verification
by using the inductive methods. Computing and Computational Intelligence. Proceeding of the 3nd European
Computing Conference (ECC’09), Thilisi, 2009, pp.357-361.

http://www.wseas.org/conferences/2009/tbilisi/Program.pdf

http://www.wseas.us/e-library/conferences/2009/georgia/ CCI1/CCI58.pdf

w N e

1LOJBOL RSFIJTS3T0L SN3THO BdSdMEOL
336038035305 Haskell 360101300

bsmgms aﬁﬁ;jodal, dbosbs 605&60332
1-03.993960830m0l - bsb. mdagmobiol Labgmdfogem wbozgdlodgdo,
2-bsJsrnggemml Bgdbogneo mbogg@lodgdo,

6G9bomdy

Haskell ©836MaMs306980L ggnbombammn® gbss s sbslosmgdl gggems ol mgoligds, Gebsgy
BbJ30mbsgno 3sMsogds gsblebrmg@sgl. 36maMsdodgdol ggnb3ombsmmn® 3sMe0gdsdo dembs(zgdms
bOnddnmol sbeggde 3sdmygabgdnmo dgomeoggdo baBmemgdsl odmggs dsGemagma@se Bgodbsl Bodgmo
3963006 Bsdemebgdo 83 LEOmIEmegeol sbsdndsgdmsr. Haskell 6ol LBsbostgmm dmememdo
236Lsbmgtrgmos gbj00l Fsdemmbo Logdol slsdnBeggdmse. Bggbo dobsbos, gg@aggagszogszool ol
semam@ondo, Gmdgmo asdmyggbgdaem ogm Lisp-ols B0 Jombsgrao 3Bma®sdgdaliogol, sbggg asdmgoggberm
Haskell 560l #0300 Fsdewembobomgol. Fobsdegdstry 6586:mddo sofgdomos Lo ddmemmo obomigool
dgomEo, G™Imals Ladgsmgdoms dmbrs Haskell -0l 0d 3633900l 3961003035308, OMImgdomsy Bgadmgds
Bogdol sbedndsggdgmo egmbz0gd0l sbsbgs.

BEPUOPUKALINA TUMMNYHOIO LUAB/TOHA OBPABOTKW CINMNCKOB A3bIKA HASKELL
Apusanze H.!, Hipxapaznze M.2
1-Téunuccknit Noc. YunsetcuteT um. U.[AxKaBaxumwisunu,
2-Tpy3MHCKUIA TeXHUYECKUIA YHUBEPCUTET
Pesiome

Assik mporpammupoBanus Haskell mpexcraBiser coGoit (yHKUMOHATBHBIM fA3BIK, U €rO
XapaKTepU3yIOT BCe Te CBOMCTBA, KOTOPHIe OIpefesdeT GYHKIMOHAIbHAA NMapagurmMa. B GyHKIMOHaIBHON
IIapagurMe IIporpaMMHPOBAHUA IIPUMEHEHHBIE METOABI IIOCTPOEHUA CTpYKTyp JAaHHBIX IIO3BOJIAIOT
IapaieIbHO CO374aBaTh LIAGIOHBI TUIMWYHBIX QYHKIUH AM1 0OpabOTKU 3THX CTPYKTyp. B cranmaprHOM
Mmopyte sispika Haskell onpegeneH wabnoH gyHKLmMn Ans 06paboTkm cnnckos. Halwua Lenb — NPUMEHeHHbIR Ang
(hYHKLMOHa/IbHOTO MporpaMMupoBaHns Jlucna anroputM BepudmKaLmym UCnonb3oBaTb TaKxke 41 TUMMYHOIO
wabnoHa s3bika Haskell. B gaHHol paboTe onucaH MeTOA CTPYKTYPHON MHAYKUMKM, C NMOMOLLbI KOTOPOro
npoeefeHa BepudmKaumsi Tex nporpamm Haskell, KOTOpbIMM MOXHO nNpeACTaBUTb (YHKLMM 06paboTKM
CMUCKOB.

172

http://gesj.internet-academy.org.ge
http://www.wseas.org/conferences/2009/tbilisi/Program.pdf
http://www.wseas.us/e-library/conferences/2009/georgia/CCI/CCI58.pdf

