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Summary
Investment objects are often represent the components of long-term strategy plan. During the realization
of this plan these features are most likely to be corrected that may become as an important reason for changing
the investment environment. Thus the results of the projects’ particular changes are very important for the
investor to provide right investment policy. The paper concerns the method for investment policy
implementation on the example of urban systems planning.
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1. Introduction

Investment objects often represent the components of long-term strategy plan. During the realization of
this plan these features are most likely to be corrected that may become as an important reason for changing the
investment environment. Thus the results of the projects particular changes are very important for the investor
to provide right investment policy.

On the example of urban systems planning is shown the method of investment policy implementation.
Generally, for simplicity, consider that a region of urban system, consisting of two districts is under
construction. Consider, that some objects from the set represented by the symbol f is to be constructed (or
demolished) during the time period (0,T)

Every plan for carrying out the above-said work can be considered as a mapping p: F = (0,T) x {1,2},
where p(f) = (&, if) if according to the plan, the construction (destruction) of the facility f will be commenced
at the instant tf of time in the district if .

Let us an incresing sequence 6 = (6,,)p<ms<n Of numbers correspond to each plan p; more precisely,
8,=0and {0,,| 1 <m<n}= {tf| fe F] U [tf + 1| f € F], where 7y is the time required for the construction
(destruction) of a facility f. In other words, @ is the sequence of those instants of time when according to the
plan p the construction or destruction of some facilities should be commenced or completed (zero instant in
addition), which is ordered by increment.

It is obvious that the parameters A; and A, of the satisfaction of population interests by the first and second
districts are changed during the construction or destruction of new facilities. These parameters can be defined as
folows. For every interest i and district j, let us denote the satisfaction parameter of the interest i in the
district j and the inevitability weight of the interest i by symbols £(i,j) and n(i) respectively 3o n(i) =
1; I is the set of interests of population). Then, the numbers A; and A, can be defined as follows:
A=) &G m@, j=12.
iel
We will accept the agreement that the weights 7(i) are constant in the time interval (0,T), and only the works

determined by the plan p influnce the parameters ¢(i,j) and conscequently, parameters A;. Therefore, we
can mean that in the time interval (0,T) , the parameters A, and A, can be changed only at instant ,,
(1 <m<n) of time. Hence, some saquence of points Lg, Ly, ..., L, of the plane (4;,4,) corresponds to each
plan p.

As it is shown in the paper [1], if the parameters A, and A, remain unchanged during the certain interval of
time (as in the case of intervals [0, @p+1)), then the numbers x,(t) and x,(t) of population in the first and
respectively, second districts satisfy the following diffential equations system:

Aix; (Vi — x;) (hyxy + hyx)

VZ+ 4x,(Vy — x1) + A2, (V, — x3)
where a; and a, are the coefficients of overproduction of population in the districts, h; and h, are the
coefficients of mobility, V; and V-, -the capacities of the districts, V - the exterior capacity (we mean that the

x; = (a; — h)x; + i=12 (1)

region is open for the migration and h; > a;).
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It may be proved that system (1) does nor have limit eyeles in the first quarter of the phase plane (xy, x5).
Indeed, let us introduce new variables: y; =lnx;, i=1;2.
Then system (1) takes the following from:
Vi = (@ = hy J+Fi(y1,y2), i=152, 2)
where
Ai(Vi—exp(yP)(hy exp(y1)+hz exp(yz))
V2421 exp(y1) (Vi —exp(y1))+2; exp(y2)(Va—exp(yz))

Fi(y,y2) = i=1;2.

Let us consider the function
v+ Arexp(yy) (V; —exp(y1)) + Az exp(y2) (V2 — EXP(}’Z))

BOwy2) = hyexp(y,) + hy exp(y,)
We have:
B d(BF,) d(BF,)
B(yy,y,) = I +— 7 = —Aexp(y,) — A, exp(¥2).

If follow that, for every Ay, 4, > 0, the function B(y,,y,) has one and same sign for all points of the plane
(71, ¥2). According to the Dulac’s criterion [2], the system of differential equations y;=F;(yvy,y,), i=1;2, does not
have limit cycles. Hence, system (2) and consequently, system (1) do not have limit cycles too. One can verify
that (x;, X, ) may be a saddle of the system only if x; and x, take very large values. Consequently, according to
the Pioncare-Bendixon theorem [2], everi non-negative coordinated solution (x; (¢ ), X, (¢)) of our interest
infinitedly approaches to some non-negative coordinated constant solution of system (1) (the phase portrains of
system (1) for some values of the parameters are given in Fig.1).

X,

{“-'iﬂl X1 | o) | X

Fig. 1. The phase portraits of system (1) for a; = 0,10, a, =0,11, h, = 0,30,
h, =0,35,  V;=30000, V,=27000, V=9600 and a)i, = 0,25,
A, =1,28 (thepoint (44,43) lies in the sea A described below); b) 4; = 0,30,
Az =1,27 (the point (44,4;) lies in the sea B described below);

Let us accept the following agreement: for every m , the interval [6,,6,,,1) is long enough so that
solutions of system (1) could have time to sufficiently approach the corresponding constant solutions of (1).
Consequenntly, in every time interval [6,,,0,+1) We can restrict ourselves to the discussion of only non-
negative coordinated constant solutions of system (1). It can be verified that constant solutions of (1) are the
pairs
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(0,0), (0, *x,) Gf 1,2

(xf,x?) and (xf,x5) (if A2 — 4(% +ﬁ] >0).
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aVy+aV,
- .

ki=ai(hi—a), A=

It is obvious that the union Z; of those portions of graphs 0;, *X;, ~X;, X{", X{ of the functions
=0 x="*x(A,1), xi= "x;(A,4,), x;=x" (A, 1), x;=x; (A1, 4,) , which are positioned on
the upper half of the space (44,4, x;), is the so called catastrophe surfac, i.e. a surface such that (44,45, x;) lies
in it if and only if x; is i-th coordinate of some equilibrium state of the system for the parameters’ values
(A1, 22)

During the realization of the plan p , the points M, and M2 , corresponding to L,, , appear on the
surfaces Z; and X, .

Let us accept one more agreement: we consider only plans p such that the points L,, and L4, , for
every 0 < m < n — 1, are placed sufficiently close to each other.

Therefore, L ={L,,|]0<m<n} and consequently, the sets
M'={ML|0<m<n} and M?={MZ|0<m<n} may be
considered as oriented curves. In the i-th district the catastrophe
(demographic explosion) occurs if and only if the curve M! has the
discontinuity. The knowledge of the from of the surfaces %, , X, and

the principle of maximal delay [3] (according to which the system
undergoes catastrophe if and only if it has no other way) would make it
possible to answer the questions whether demographic explosions are
expected in a region during the realization of a plan p (Fig. 2).

Fig. 2. a) The curve M is discontinuous and consequently, the catastrophe will
occur in the district; b) the curve M is continuous and consequently, the
catastrophe will not occur in the district.

As a rule it is difficult to observe the behavior of curves M on the surfaces ¥; . Thus, there appears the
problem of finding out the possibility of demographic explosions in a region applying only a curve, without
referring to the spatial picture.

For this purpose, let us in the first quarter of the plane (4;,4,) mark out those areas, where the
functions *x;, “x;, xf, xi (i =1;2) are defined and non-negative. Let us also single out the curves
where the surfaces 0;, *x;, ~x;, x, x; intersect. It can be verified that abiding by the above we will
obtain the following pictures (fig. 3):
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Fig. 3. The bifurcational curves of the system a) when @1V > a;Vy;

121



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

The equation of the curve [; depicted in fig. 3 is
_ kiaje; 23 ( - ks ) )
ki(aze;areid; — ky) °T mempe,/)’

i

the equation of the curve [, depicted in fig. 3 is
k,afefA; k
i = 201614 ("11 > 1 ) ;
ki(a e aze21, — ky) 16,076

the equation of the curve [; depicted in fig. 3 is
4!’{2/11 - Azilllz + 4!’{1;{2 =0 (‘ll = _);

the lines [, and [; infig. 3 are given by the equalities

ey ey v, .
A = ; Ay =-—5; where e=— i=12
17 g2e2’ 27 qZe?’ Ly !

In every area in fig. 3 there are written the equilibrium states with non-negative coordinates existing in
it. Herewith, we have accepted the following notations:

0,0=1; ("x,0)=2; x,0)=3;0,"x)=4; (0,*x) =5; (x5, xH) =6, (x7,x3)=7;

the stable equilibrium states are taken in circles.
It can be verified that

1 if a;V; 2a;V;
;N X!'+)={E} u 12 if a;V; <a;V; :
(0, 0 X7)= )[g“)' . Ff aV; =z q;V; (4)
By if a;V; <aq;V;
m(0; n X;)=0 ?
m(0; n ~X;)=0 ©
;owoif qV,>aV,
m(*X; nX.v‘)={;3 i ZZLL,’I; SZ;E i
7" X; 0 X))-0 Y
n(*X; N X7 )= {I; ! :]; ZL'; :j];j (9)
("X 0 X7))=1 Y
(X" 0 X7)=ls i
m(*X; 0T X)=ljss o

where j is a number of the district different from the i-th district, m(¥) denotes the projection of a set Y on
the plane (44,45).

Now we can observe the qualitative side of the population dynamics, based on a curve L and, in
particular, answer the question whether demographic explosions are expected.

Let us give an example. Consider the curve L in fig. 3. It is evident that while the current point of the
curve L is placed within an area, the catastrophe does not occur. It may take place only while passing
boundaries. Assume that in the initial instant of time the regional system is in the equilibrim state (x;, x3); then
M¢ X} and M{ XS  When L intersects the curve [Z, then according to the maximal delay principle M2
(respectively M¢Z) should continue the movement on a surface X, (respectively X,) such that the projection on
the plane (4,4,) of the intersection of X, (respectively X,) with X; (respectively X;) contains the point L.
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According to (3-12), the surface 0, appear to be such one (respectively *X,). Therefore, in the area C the
system turns out in the equilibrium state (0," X;) (existing in C according to fig. 2). Where the parameters’
point is passing the point Q,, M' should remain again on 0, or come to the surface X; , but M? should
remain again on surface X7 or change over to ~X,. Consequently, when point of L is going to the area I, the
system passes to one of the states (0,*x,), (0,7 x,), (x{,x3), (x{, ~x). The first and the latter states do not
exist at all; the state (0,7 x;) does not exist in the area [. Hence, when the parameters’ point comes to [, the
system is in the equilibrium state (x{",x7) and M' X, M? : XJ. The similar arguments show that in the area
L there do not exist an equilibrium state (x;,%;) such that @, € m(X{ n X;) n (X5 n X,). Hence, it can be
concluded that when passing the point @, the catastrophe will occur.

In general, such straightforward answer cannot be given to the question whether the catastrophe will
occur if the point (4;,4,) traces out a given curve. Therefore, it is expedient to set the problem of finding the
probability of the latter event.

Hereinafter, without loss of generality, we will assume that the initial and terminal points of curves are
positioned within areas.

It is easy to observe that in fact it does not matter of what type a curve L is, but it is important what
sequence of areas the curve is passing.It also makes it difference which of the common vertices and edges are
intersected by a curve L while coming over from one area to another. Consequently, it is natural that instead of
curves L we consider objects of following form:

AgVA1v14; ... Ap_1Vn14y (13)
where n is any natural number A; are areas indicated in fig. 3 and v; are common vertices or edges (which
are considered without “boundary” poins) of area 4; and A;4;.

Let us introduce some notations. Let S, be the set of equilibrium states with non-negative coordinates
existing in area A. Let us denote by S; (by S, respectively), for every seS, , the graphs of the first component
(of the second component respectively) of s in the space (44,43, x;) (in the space (A4,4,,%;) respectively)
(for instance, §;, =0;, S, = "X, for s =4).

For every two neighboring areas A; and A;,; and for their common vertex or edge v, there appears
the relation R, between the sets S, and S, ~ that is given in the following way: for any seS,, and
S €Sy, SRys’ ifand only if

vem(S;nS) m(S,nS,) (14)
(if v is an adge, then we mean instead of € in (14)).

It is obvious that (14) is equivalent to the requirement that during the movement of the parameters’ point
from the area A; , by passing v, to the area A;., , the equilibrium state s may come over to the state s’
without the catastrophe [4]. The relations induced by all the vertices and edge depicted in fig. 4 are described in
tables 1-13 below.

Let us correspond some tree to every route (13). For the sake of brevity we give here not quite strict, but
intelligible difinition of it:

o let us write “A,” and call it 0 th-level vertex;
e let us write out all the elements of the S,, (call them the first-level

1
1 1 . .
2 / \E vertices). For every s S, , construct the arrow Ag - s and call it a 0
2 3

th-level edge of the tree.
e if the i th-level vertices are constructed, then the (i + 1)th-level
3 ./% \f Ila/—;& 3 | ones can be constructed in the following way: if s isa i th-level vertex,
6 S'ESAI.Jrl and SRPES/ , then s  is a (i + 1)th-level vertex and arrows

s — s isan edge of the tree, that is said to be a i th-level edge.
/ / \ For instance, the tree of the route is given in fig. 4.
2 3

Fig. 4. The tree of rout, when initial equilibrium state is 2
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Let us assign some number to every i th-level edge s -~ s (i =1,2,..,n) of the tree corresponding
to rout (13); this number expresses the conditional probability that the system will be in the equilibrium state s
under the condition that the parameters’ point has passed from A; to A;,, via v; and when the parameters’
point was in the area A, , the system was in the equilibrium state s.
To find the mentioned probability, let us suppose that there exists and does not depend on i theconditional

probability that the system will pass to a stable (unstable reprectively) equilibrium state under the condition
that the parameters’ point has passed from A; to A;,, and that there exist both stable and unstable states s in
Sa;,, with sR,s" ;let us denote this probability by p (g respectively). Obviously p+¢q =1 and p>q . Let
kiy; (myy, respectively) be the number of the i th-level arrows s - s’ with stable (unstable respectively) s .
Assuming now that all possible transition s - s’ of this kind are equiprobable, we conclude that the desired
probability is equal to 1/k;,, (1/m;,, respectively) if s  is stable (ustable respectively) and there are not
unstable (stable respectively) states s~ in Sa;,, with sR, s ", and it is equal to p/k;s; (q/m;., respectively)
if 5" is stable (ustable respectively), but there are unstable equilibrium states s in 4;,, With sR, s

Let us also assign the similarly defined number to all zero-level edge. After this , it is easy to calculate the
probability that the catastrophe will not occur: we have to mark out all “long” chains and then to take the sum
of products of numbers assigned to edges of marked chains.

In the initial time, the number of population is often known and consequently, the current equilibrium
state in the initial area of a route is known too. Hence, instead of the whole tree, we can consider only part of it.

For each L(Lg,Ly,...Ly) curve can be calculated probabilities, that for some realization of urban
development plan what is probability of explosion to occur [4]. This allows us to evaluate the investment risks
that are placed in the region.

For this, consider the region as an economic system. Suppose it is composed of n -interconnected
subsystems.

Let us describe each subsystem with income Y;(t,p), which it already has and with investment /;(t, p)
which it is realizing. Obviously it depends on the particular development p plan.

I(t,p) = Ni(t.p) + () (Wi(t,p) — Et,p)), i =12,..n
(15)
yit.p) 20; I(t.p) = 0.
Here: N,(t,p)- is an investment value of their income from the investments realized in the same subsystem;

E(t, p)- is an investment value from i subsystem to another subsystem;
W;(t, p)- is an investment value from another subsystem to i subsystem;
w(P)(0 < u(p) < 1)-is an incidental ratio;
if u(p) = O, then there is no connection between subsystems at the time of the p plan realization. When
u(p) =1, then all of the subsystems are interconnected.

If we denote x;;(t, p) as the investment flow from subsystem i to subsystem j, we will have the following
balance equalities:

Ei(t,p) = Yi=1,j=: Xi(t, D)
(16)
Wi(t, p) = Xj-1,j=i %i (£, D)
If we allow that each particular p plan realization investment portion of the probability distribution a;;(p)
between subsystems are random distribution values and the investments are totally consumed then:
I?=1 Qjj (p)=1;i=12,..,n 17)

At that kind of limitations we can imagine the investment portion dynamics as a local - stationary state

sequence for each t-moment - of which entropy is defined with the equation:
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_ _vn xij(tp)
H(X(t,p) = =L, 26PN 00

in case of appropriate (17) and (18) limitations.

- max (18)

Here probabilities of the investment a;;(p) distribution in the subsystems are defined prior, in
accordance with the method described above (see Fig.4) . For each subsystem the for the portion of the
investment value we should take x ; J,-(t_, p), in which case the system entropy H (X (t, p)) is maximal. In this case

the investment risk is minimal.
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®AKTOP CBA3HOCTW ANA MPOBEAEHNSA MHBECTULIVIOHHOW
MNOTINTUKN

Axobaase M., Kunwmgse A.
"py3VHCKWUIA TeXHUYUCKNIA Y HUBEPCUTET

Pe3tome

NHBECTULMOHHbIE OGLEKTbI HEpeaKo SBMAIOTCA 4YacTbl0 MHOFOJIETHEro CTpaTerMyeckoro mnnaHa. [pu
peanu3alyn Takoro NpoeKTa He3HauWTe/bHbIE M3MEHEHWS B MaHe pPeanm3almy MOryT CTaTb MPUYMHONM GOMbLIMX
U3MeHEeHUIA NHBECTVLIMOHHOM cpefpl. [M03TOMY, UHBECTOPY A/1S1 NPaBU/IbHOFO BEEHWS| UHBECTULIMOHHOMN MONUTUKU
BaXHO 3HaTb, KaK B/ANUSIOT 3TW W3MEHEHUs Ha WHBECTULMOHHYIO Ccpedy. B faHHO pa6oTe Ha npumMepe
rPafoCTPOUTENbHON CUCTEMbI MPOWUIIOCTPUPOBAHbI Pa3paboTaHHbIe HamK anropUTMbl ONTUMAbHOTO BefeHWs
WHBECTULIMOHHOI NONNTUKN.
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