
Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(10), 2011

119

CONNECTIVITY FACTOR FOR INVESTMENT POLICY IMPLEMENTATION

Akhobadze Merab, Kipshidze David
Georgian Technical University

Summary
Investment objects are often represent the components of long-term strategy plan. During the realization

of this plan these features are most likely to be corrected that may become as an important reason for changing
the investment environment. Thus the results of the projects’ particular changes are very important for the
investor to provide right investment policy. The paper concerns the method for investment policy
implementation on the example of urban systems planning.
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1. Introduction

Investment objects often represent the components of long-term strategy plan. During the realization of
this plan these features are most likely to be corrected that may become as an important reason for changing the
investment environment. Thus the results of the projects particular changes are very important for the investor
to provide right  investment policy.

On the example of urban systems planning is shown the method of investment policy implementation.
Generally, for simplicity, consider that a region of urban system, consisting of two districts is under
construction. Consider, that some objects from the set represented by the symbol f is to be constructed (or
demolished) during the time period (0,T)

Every plan for carrying out the above-said work can be considered as a mapping : → (0, ) × {1,2},
where ( ) = ( , ) if according to the plan, the construction (destruction) of the facility will be commenced
at the instant of time in the district .

Let us an incresing sequence = ( ) of numbers correspond to each plan ; more precisely,= 0 and { | 1 ≤ ≤ } = | ∈ ∪ + | ∈ , where is the time required for the construction
(destruction) of a facility . In other words, is the sequence of those instants of time when according to the
plan the construction or destruction of some facilities should be commenced or completed (zero instant in
addition), which is ordered by increment.
It is obvious that the parameters and of the satisfaction of population interests by the first and second
districts are changed during the construction or destruction of new facilities. These parameters can be defined as
folows. For every interest and  district , let us denote the satisfaction parameter of the interest in the
district and the inevitability weight of the interest by symbols ( , ) and ( ) respectively (∑ ( ) =1; is the set of  interests of population). Then, the numbers and can be defined as follows:= ( , ) ( ), = 1; 2.
We will accept the agreement that the weights ( ) are constant in the time interval (0,T), and only the works
determined by the plan influnce the parameters ( , ) and conscequently, parameters . Therefore, we
can mean that in the time interval  (0,T)  , the parameters and can be changed only at instant(1 ≤ ≤ ) of time. Hence, some saquence of points , , … , of the plane  ( , )  corresponds to each
plan .
As it is shown in the paper  [1] , if the parameters and remain unchanged during the certain interval of
time (as in the case of intervals [ , )), then the numbers ( ) and ( ) of population in the first and
respectively, second districts satisfy the following diffential equations system:

′ = ( − ℎ ) + ( − )(ℎ + ℎ )+ ( − ) + ( − ) , = 1; 2, (1)
where and are the coefficients of overproduction of population in the districts, ℎ and ℎ are the
coefficients of mobility, and -the capacities of the districts, - the exterior capacity (we mean that the
region is open for the migration and ℎ > ).
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It may be proved that system (1) does nor have limit eyeles in the first quarter of the phase plane ( , ).
Indeed, let us introduce new variables: = ln , = 1; 2.

Then system (1) takes the following from:
′ = ( − ℎ )+ ( , ), =1;2, (2)

where ( , ) = ( ( ))( ( ) ( ))( )( ( )) ( )( ( )) , =1;2.

Let us consider the function( , ) = + exp( ) ( − exp( )) + exp( ) ( − exp( ))ℎ exp( ) + ℎ exp( ) .
We have: ( , ) = ( ) + ( ) = − exp( ) − exp( ).
If follow that, for every , > 0, the function B( , ) has one and same sign for all points of the plane( , ). According to the Dulac’s criterion [2], the system of differential equations ′= ( , ), =1;2, does not
have limit cycles. Hence, system (2) and consequently, system (1) do not have limit cycles too. One can verify
that ( , ) may be a saddle of the system only if and take very large values. Consequently, according to
the Pioncare-Bendixon theorem [2], everi non-negative coordinated solution ( (t ), (t )) of our interest
infinitedly approaches to some non-negative coordinated constant solution of system (1) (the phase portrains of
system (1) for some values of the parameters are given in Fig.1).

Fig. 1. The phase portraits of system (1) for = , , = , , = , ,= , , = , = , = and   a) = , ,= , (the point ( , ) lies in the sea A described below); b) = , ,= , (the point ( , ) lies in the sea B described below);

Let us accept the following agreement: for every , the interval [ , ) is long enough so that
solutions of system (1) could have time to sufficiently approach the corresponding constant solutions of (1).
Consequenntly, in every time interval [ , ) we can restrict ourselves to the discussion of only non-
negative coordinated constant solutions of system (1). It can be verified that constant solutions of (1) are the
pairs (0,0), (0, ± ) (if
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= (ℎ − ), = .
It is obvious that the union Σ of  those portions of graphs 0 , , , , of the functions= 0, = ( , ), = ( , ), = ( , ), = ( , ) , which are positioned on

the upper half of the space ( , , ), is the so called catastrophe surfac, i.e. a surface such that ( , , ) lies
in it if and only if is -th coordinate of some equilibrium state of the system for the parameters’ values( , ) .

During the realization of the plan , the points and , corresponding to , appear on the
surfaces Σ and Σ .

Let us accept one more agreement: we consider only plans such that the points and , for
every 0 ≤ ≤ − 1, are placed sufficiently close to each other.

Therefore, = { | 0 ≤ ≤ } and consequently, the sets= { | 0 ≤ ≤ } and = { | 0 ≤ ≤ } may be
considered as oriented curves. In the -th  district the catastrophe
(demographic explosion) occurs if and only if the curve has the
discontinuity. The knowledge of the from of the surfaces Σ , Σ and
the principle of maximal delay [3] (according to which the system
undergoes catastrophe if and only if it has no other way) would make it
possible to answer the questions whether demographic explosions are
expected in a region during the realization of a plan (Fig. 2).

Fig. 2. a) The curve M is discontinuous and consequently, the catastrophe will
occur in the district; b) the curve M is continuous and consequently, the
catastrophe will not occur in the district.

As a rule it is difficult to observe the behavior of curves on the surfaces Σ . Thus, there appears the
problem of finding out the possibility of demographic explosions in a region applying only a curve, without
referring to the spatial picture.

For this purpose, let us in the first quarter of the plane ( , ) mark out those areas, where the
functions , , , ( = 1; 2) are defined and non-negative. Let us also single out the curves
where the surfaces 0 , , , , intersect. It can be verified that abiding by the above we will
obtain the following pictures (fig. 3):

Fig. 3. The bifurcational curves of the system a) when > ;
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The equation of the curve depicted in fig. 3 is= ( − ) ≥ ;
the equation of the curve depicted in fig. 3 is= ( − ) ≥ ;
the equation of the curve depicted in fig. 3 is4 − + 4 = 0 ≥ 4 ;
the lines and in fig. 3 are given by the equalities= ; = ; where = = 1; 2.

In every area in fig. 3 there are written the equilibrium states with non-negative coordinates existing in
it. Herewith, we have accepted the following notations:(0,0) ≡ 1; ( , 0) ≡ 2; , 0) ≡ 3; (0, ) ≡ 4; ( 0, ) ≡ 5; ( , ) ≡ 6; ( , ) ≡ 7;
the stable equilibrium states are taken in circles.

It can be verified that

( ∩ )=
if ≥∪ if < (3)

( ∩ )=
Ø if ≥∪ if < (4)

( ∩ )=Ø (5)

( ∩ )=Ø (6)( ∩ )=
∪ if >

Ø if ≤ (7)( ∩ )=Ø (8)(  )=
∪ if >if ≤ (9)( ∩ )= (10)

( ∩ )= (11)( ∩ )= (12)
where is a number of the district different from the -th district, ( ) denotes the projection of a set Y on
the plane ( , ).

Now we can observe the qualitative side of the population dynamics, based on a curve and, in
particular, answer the question whether demographic explosions are expected.

Let us give an example. Consider the curve in fig. 3. It is evident that while the current point of the
curve is placed within an area, the catastrophe does not occur. It may take place only while passing
boundaries. Assume that in the initial instant of time the regional system is in the equilibrim state ( , ); then∈ and ∈ . When intersects the curve , then according to the maximal delay principle
(respectively ) should continue the movement on a surface (respectively ) such that the projection on
the plane ( , ) of the intersection of (respectively ) with (respectively ) contains the point .
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According to (3-12), the surface appear to be such one  (respectively ). Therefore, in the area  C the
system turns out in the equilibrium state (0, ) (existing in C according to fig. 2). Where the parameters’
point is passing the point , should remain again on or come to the surface , but should
remain again on surface or change over to . Consequently, when point of is going to the area , the
system passes to one of the states (0, ), (0, ), ( , ), ( , ). The first and the latter states do not
exist at all; the state (0, ) does not exist in the area . Hence, when the parameters’ point comes to , the
system is in the equilibrium state ( , ) and ∈ , ∈ . The similar arguments show that in the area

there do not exist an equilibrium state ( , ) such that ∈ ( ∩ ) ∩ ( ∩ ). Hence, it can be
concluded that when passing the point , the catastrophe will occur.

In general, such straightforward answer cannot be given to the question whether the catastrophe will
occur if the point ( , ) traces out a given curve. Therefore, it is expedient to set the problem of finding the
probability of the latter event.
Hereinafter, without loss of generality, we will assume that the initial and terminal points of curves are
positioned within areas.

It is easy to observe that in fact it does not matter of what type a curve is, but it is important what
sequence of areas the curve is passing.It also makes it difference which of the common vertices and edges are
intersected by a curve while coming over from one area to another. Consequently, it is natural that instead of
curves we consider objects of following form: … , (13)
where is any natural number are areas indicated in fig. 3  and are common vertices or edges (which
are considered without “boundary” poins) of area and .

Let us introduce some notations. Let be the set of equilibrium states with non-negative coordinates
existing in area . Let us denote by (by respectively), for every , the graphs of the first component
(of the second component respectively) of in the space ( , , ) (in the space ( , , ) respectively)
(for instance, = , = for = 4).

For every two neighboring areas and and for their common vertex or edge , there appears
the relation between the sets and that is given in the following way: for any and
′ , ′ if and only if ( ∩ ′ ) ∪ ( ∩ ′ ) (14)

(if is an adge, then we mean ⊂ instead of in (14) ).
It is obvious that (14) is equivalent to the requirement that during the movement of the parameters’ point

from the area , by passing , to the area , the equilibrium state may come over to the state ′

without the catastrophe [4]. The relations induced by all the vertices and edge depicted in fig. 4 are described in
tables 1-13 below.

Let us correspond some tree to every route (13). For the sake of brevity we give here not quite strict, but
intelligible difinition of it:

 let us write “ ”  and call it 0 th-level vertex;
 let us write out all the elements of the (call them the first-level

vertices). For every ∈ , construct the arrow → and call it a 0
th-level edge of the tree.

 if the th-level vertices are constructed, then the ( + 1)th-level
ones can be constructed in the following way: if is a th-level vertex,
′ and ′ , then ′ is a ( + 1)th-level vertex and arrows→ ′ is an edge of the tree, that is said to be a th-level edge.

For instance, the tree of the route is given in fig. 4.

Fig. 4. The tree of rout, when initial equilibrium state is 2
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Let us assign some number to every th-level edge → ′ ( = 1,2, … , ) of the tree corresponding
to rout (13); this number expresses the conditional probability that the system will be in the equilibrium state ′

under the condition that the parameters’ point has passed from to via and when the parameters’
point was in the area , the system was in the equilibrium state .
To find the mentioned probability, let us suppose that there exists and does not depend on theconditional
probability that the system will pass to a stable (unstable reprectively) equilibrium state under the condition
that the parameters’ point has passed from to and that there exist both stable and unstable states ′′ in

with ′′ ; let us denote this probability by ( respectively). Obviously + = 1 and > . Let
( respectively) be the number of the th-level arrows → ′′ with stable (unstable respectively) ′′ .

Assuming now that all possible transition → ′′ of this kind are equiprobable, we conclude that the desired
probability is equal to 1/ (1/ respectively) if ′ is stable (ustable respectively) and there are not
unstable (stable respectively) states ′′ in with ′′ , and it is equal to / ( / respectively)
if ′ is stable (ustable respectively), but there are unstable equilibrium states ′′ in with ′′.

Let us also assign the similarly defined number to all zero-level edge. After this , it is easy to calculate the
probability that the catastrophe will not occur: we have to mark out all “long” chains and then to take the sum
of products of numbers assigned to edges of marked chains.

In the initial time, the number of population is often known and consequently, the current equilibrium
state in the initial area of a route is known too. Hence, instead of the whole tree, we can consider only part of it.

For each ( , , … ) curve can be calculated probabilities, that for some  realization of urban
development plan what is probability of explosion to occur [4]. This allows us to evaluate the investment risks
that are placed in the region.

For this, consider the region as an economic system. Suppose it is composed of n -interconnected
subsystems.

Let us describe each subsystem with income ( , ), which it already has and with investment ( , )
which it is realizing. Obviously it depends on the particular development p plan.( , ) = ( , ) + ( ) ( , ) − ( , ) , = 1,2, …

(15)( , ) ≥ 0; ( , ) ≥ 0.
Here: ( , )- is an investment value of their income from the investments realized in the same subsystem;( , )- is an investment value from subsystem to another subsystem;( , )- is an investment value from another subsystem to subsystem;( )(0 ≤ ( ) ≤ 1)-is an incidental ratio;

if ( ) = 0, then there is no connection between subsystems at the time of the p plan realization. When( ) = 1, then all of the subsystems are interconnected.
If we denote ( , ) as the investment flow from subsystem to subsystem , we will have the following

balance equalities:( , ) = ∑ ( , ),
(16)( , ) = ∑ , ( , )

If we allow that each particular p plan realization investment portion of the probability distribution ( )
between subsystems are random distribution values and the investments are totally consumed then:∑ ( ) = 1 ; i= 1,2, … , (17)

At that kind of limitations  we can imagine the investment portion dynamics as a local - stationary state
sequence for each t-moment - of which entropy is defined with the equation:
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( , ) = − ∑ ( , ) ( , )( ), , → (18)

in case of  appropriate (17) and (18) limitations.
Here probabilities of the investment ( ) distribution in the subsystems are defined prior, in

accordance with the method described above (see Fig.4) . For each subsystem the for the portion of the
investment value we should take ∗ ( , ), in which case the system entropy ( , ) is maximal. In this case
the investment risk is minimal.
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bmulobis faqtori sainvesticio politikis

warmarTvisas

merab axobaZe, daviT yifSiZe

saqarTvelos teqnikuri universiteti

reziume

xSirad sainvesticio obieqtebi warmoadgens mravalwliani strategiuli gegmis Semadgenel

nawilebs. proeqtis realizaciisas mosalodnelia misi mcire koreqtireba, rac sainvesticio garemos

mniSvnelovani cvlilebis mizezi SeiZleba gaxdes. aqedan gamomdinare, investorisaTvis metad

mniSvnelovania icodes, ra Sedegebi SeiZleba moyves proeqtis ama Tu im cvlilebas, raTa sworad

warmarTos sainvesticio politika. naSromSi naCvenebia sainvesticio politikis warmarTvis algoriTmi

urbanuli sistemis ganaSenianebis magaliTze.

ФАКТОР СВЯЗНОСТИ ДЛЯ ПРОВЕДЕНИЯ ИНВЕСТИЦИОННОЙ
ПОЛИТИКИ

Ахобадзе М., Кипшидзе Д.
Грузинский Техничиский Университет

Резюме

Инвестиционные обьекты нередко являются частью многолетнего стратегического плана. При
реализации такого проекта незначительные изменения в плане реализации могут стать причиной больших
изменений инвестиционной среды. Поэтому, инвестору для правильного ведения инвестиционной политики
важно знать, как влияют эти изменения на инвестиционную среду. В данной работе на примере
градостроительной системы проиллюстрированы разработанные нами алгоритмы оптимального ведения
инвестиционной политики.


