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Summary 
 

While statistical methods for quality improvement have found broad application in 

traditional production industries (e.g. automotive, electronics, chemical and food-processing 

industries), their use in the software engineering field have been rather limited. There are, 

however, examples showing that the statistical quality improvement methods can equally well 

be applied to software engineering, or alternatively to larger IT application development. In 

this paper we review one important area of statistical quality improvement; namely, Statistical 

Process Control (SPC) and discuss its application in the software engineering context. 
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1. Introduction 
 

With the increased share of software in today’s manufactured products demands on its 

quality and reliability are increasing as well. To meet these increasing demands it is not sufficient to 

focus on the software product alone, but also on the process facilitating the development of that 

software product i.e. the software development process; see e.g. Humphrey (1995) and Florac & 

Carleton (1999). 

Software engineering, as a scientific discipline, has undergone substantial transformation 

from a manual machine code writing in the 1940s to object-oriented programming in the 1990s to 

today’s managed code platforms such as Java, .NET and PHP. Furthermore, a number of software 

development models, including the Waterfall model (see e.g. Royce (1970)), incremental/iterative 

models (see e.g. Basili & Turner (1975)), the Spiral model (see e.g. Boehm (1988)), Rapid Application 

Development (see e.g. Martin (1991)) and the Rational Unified Process (see e.g. Kruchten (1998)) 

have evolved as a means to help develop software products in a structured and systematic way. 

Nevertheless, application of statistical quality improvement methods to the software development 

process has been rather limited. In the meantime, automotive, electronics, chemical and food-

processing industries have benefited greatly from the use of statistical methods in their efforts to 

achieve high product quality and reliability. 

The purpose of this paper is not to investigate the reasons behind the limited application of 

statistical quality improvement methods to software development processes. The purpose is rather to 

show some examples of application of Statistical Process Control (SPC), an important area of 



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS -  No 1(4),  2008 
 

 23

statistical quality improvement, to software development processes and discuss its application in the 

software engineering context. 

2. Quality and Unwanted Variation 
 

Since quality in industry is often viewed as inversely proportional to unwanted variation (see 

e.g. Montgomery (2001)), the attainment of high product quality depends largely on our ability to 

manage variation in various production and product development phases, including product planning, 

product/process development, serial production, sales, after-sales services and recycling. During this 

process, a thorough understanding of sources of variation, the means to detect, identify and eliminate 

them, and the actions required to minimize their impact on critical product, process or system 

characteristics is essential for delivering the product quality we promise to our customers. In addition 

to improved quality, reduced variability leads to fewer repairs, less re-work, and minimum waste, thus 

decreasing the total product realization cost; see Montgomery (2001) and Thornton (2004).  A similar 

interpretation of quality is also found in Deming (1986), in which he compares the effect of quality 

improvement with productivity as a result of variation reduction. Furthermore, Deming describes this 

relationship as a chain reaction, leading to company’s long-term sustainability and success in business. 

Finding and eliminating sources of variation and minimizing the impact that they have on 

important product characteristics are two variation management strategies that companies deploy to 

cut down development, production, usage and recycling costs; yet deliver high quality and reliable 

products; see Abraham and Brajac (2001) and Thornton (2004).  This thinking has also been reflected 

in different company-wide quality improvement initiatives, some later examples of which are Six 

Sigma, see e.g. Magnusson et al. (2003), Design for Six Sigma, see e.g. Watson (2005), and Lean 

Manufacturing, see e.g. Womack et al. (2007). 

3. Statistical Process Control 
 

Walter A. Shewhart was one of the first to understand the benefits of reducing variation in 

the manufacturing industry.  He realized that although customers had varying needs and wants they 

would not appreciate variability in units of products manufactured to the same specifications.  Thus, 

efforts should be directed to reducing variation between the units of the same type of product; see 

Shewhart (1931).  However, this seems to be meaningless if all sources of variation are small relative 

to the total variation of the units. When no single source of variation is dominant, Shewhart says that 

the process is in a state of statistical control. He refers to these non-dominant sources of variation as 

“chance causes of variation”. If, however, one or more sources of variation dominate over the others, 

the process is out of statistical control, and it may be economically feasible to find and eliminate the 

dominant sources of variation.  Shewhart calls these dominant sources “assignable causes of 

variation”.  To detect assignable causes of variation, Shewhart proposed five criteria. These criteria, in 

simpler forms, are also found in different quality improvement techniques, such as the Japanese Seven 

Quality Control (7QC) tools; see Shewhart (1931) and Chakhunashvili (2006) for further details on 
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Shewhart’s criteria for detecting the presence of assignable causes and Bergman & Klefsjö (2003) for 

a thorough review of the 7QC tools. 

Shewhart’s ideas on variation reduction formed the basis of SPC.  As an important part of 

improvement work, the goal of SPC is to find assignable causes of variation and eliminate them as 

soon as possible; see Bergman & Klefsjö (2003). One of the most commonly used tools of SPC is the 

control chart. We illustrate the application of the Shewhart type of control chart in Section 3.1. 

3.1 The Shewhart Control Charts 
 

The idea of employing a control chart is to graphically monitor the variability of a product 

characteristic over time. Shewhart suggested the first control chart in 1924 when he studied variation 

in the measured qualities of products manufactured for Bell Systems; see Juran (1997).  It was a 

control chart constructed to monitor the fraction of defective units.  Following the Shewhart control 

chart numerous other control charts evolved over the decades.  They can formally be grouped into two 

relatively larger subgroups depending on the type of data monitored.  The first group includes control 

charts for variable data, also called continuous data measurements, and the second group includes 

control charts for attribute data, also called discrete data measurements.  Furthermore, there are two 

measures usually monitored in a process, namely, the sample mean and the sample standard deviation 

(alternatively the sample range).  The mean shows how close to the target the process performs while 

the standard deviation (alternatively the range) describes the dispersion of the process.  Both changes 

in the process mean and increased dispersion may lead to undesired consequences.  Therefore, it is 

often desirable to monitor not only the process mean, but also the process dispersion.  Furthermore, 

some control charts may be more sensitive to changes in the process than others, and some control 

charts may treat observations individually while the other control charts might utilize smaller groups 

called samples.  These and some other aspects of the charting technique are important to take into 

consideration when constructing a control chart. 

A typical Shewhart control chart consists of a centerline (CL), normally corresponding to the 

process mean, and two control limits, the upper control limit (UCL) and lower control limit (LCL).  A 

control chart should be designed so that it can quickly signal an alarm (the plotted measurement 

outside the control limits) if unusual behavior is detected in the observed characteristic. However, the 

number of false alarms, i.e. indications of assignable causes when they actually do not exist, should be 

as rare as possible. To meet these requirements control limits set at 3µ ± σ , where µ  is the process 

mean and σ  is the standard deviation, appear to be adequate. These limits are sometimes also referred 

to as the three-sigma limits. However, values other than three can also be considered depending on the 

objective of the monitoring procedure. Furthermore, the choice of three-sigma has economic reasons. 

According to Shewhart (1931), if the measured quantity of a quality characteristic deviates more than 

three-sigma times from its expected value, it is usually economically feasible to look for the causes of 

variation and try to eliminate them. 
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As an illustration of how the outcome of a typical control chart is interpreted, let us take a 

look at an x  control chart shown in Figure 1. For details on how this control chart is constructed the 

reader is referred to Bergman & Klefsjö (2003), Wheeler & Chambers (1992) or Montgomery (2001), 

which provide a thorough explanation of the charting technique. 
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Figure 1. An x  control chart 

 
Although the initial observations are well within control limits, a point outside the UCL at 

sample 23 indicates that the process is influenced by assignable cause(s) of variation. Hence, the 

process is out of statistical control. The next step is to identify the assignable cause(s) and eliminate 

it/them. The elimination of an assignable cause considerably decreases the total process variation, thus 

improving the process stability and predictability. 

While the judgment of the state of statistical control in the illustration above is based on a 

simple rule, a single observation outside the three-sigma limits, more systematic rules are needed in 

some situations to determine whether the process is or is not in statistical control.  In this respect, it is 

worth mentioning the rules devised by Western Electric (1956). According to these rules, even two out 

of three consecutive points lying beyond the two-sigma limits, four out of five consecutive points 

lying beyond the one-sigma limit and eight consecutive points lying on one side of the target value 

would be considered as an indication of lack of statistical control.  It should be kept in mind, however, 

that when applying these rules, the frequency of false alarms might increase. 

One of the most important properties of a control chart is its ability to react to changes in the 

process. This property is also called the sensitivity of a control chart and can be assessed by the 

Average Run Length (ARL).  The ARL shows how long it takes for the control chart to signal an 

alarm from the point at which a systematic change in the process has occurred.  The ARL value 
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depends on the size of the change and is normally measured in terms of the number of runs or time 

intervals; see Montgomery (2001) and Bergman & Klefsjö (2003). The ARL values can be computed 

using either probabilistic methods such as the Markov chain approach or by means of Monte Carlo 

simulations. While reliable ARL values using a probabilistic approach can be obtained analytically in 

relatively short time, Monte Carlo simulations offer other advantages including the possibility of 

varying the control chart parameters in a random manner. 

 

3.2 The EWMA and CUSUM Control Charts 
 

Some production processes are characterized by stationary variation, that is, variation 

observed about a fixed mean. Furthermore, variation in a process may be of different sizes. While the 

Shewhart control chart is effective in detecting larger shifts in order to promptly detect the presence of 

smaller variations (about 1.5 σ  and less), some specific control charts may be required. Roberts (1959) 

formally introduced the Exponentially Weighted Moving Average (EWMA) control chart as an 

alterative to the Shewhart control chart, especially for monitoring processes with small variations.  Its 

performance is often compared to that of the cumulative sum (CUSUM) control chart and is generally 

considered easy to implement and maintain; see e.g. Montgomery (2001). The CUSUM control chart 

is constructed by plotting the accumulated sum of the deviations from the target value; see Page 

(1961) and Evan (1963). Like the EWMA control chart the CUSUM control chart is also effective in 

detecting small changes in a process.  The key point in differentiating EWMA and CUSUM control 

charts is the way each of them handles past data.  The CUSUM places equal weights on all past 

observations whereas the EWMA gives greater weight to more recent observations and lesser weight 

to older ones.  In this way, the EWMA quickly forgets the history and pays more attention to the 

nearest past. Finally, it should be mentioned that the Western Electric rules are not recommended to 

apply to the EWMA and CUSUM control charts since this might increase the false alarm rate due to 

the correlations observed between the consecutive EWMA and CUSUM values, respectively. 

3.3. Multivariate Control Charts 
 

When several variables influence the process outcome it is often advantageous to monitor 

them with one single statistic instead of constructing a number of individual control charts, one for 

each variable.  There are two major rationales in doing so. Firstly, it is easier to operate a single 

control chart than several of them and secondly, and perhaps more importantly, a multivariate control 

chart can detect systematic changes that an individual control chart cannot.  This approach is 

especially useful when it comes to monitoring related variables. Thus, when designing a multivariate 

control chart, particular attention should be paid to the relationship between the observed variables.  

Furthermore, if the number of original variables is too large, numerous multivariate techniques, such 

as factor analysis, are often used to reduce the number of monitored variables. A detailed review of the 
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multivariate control charts is beyond the scope of this paper. The interested readers are therefore 

referred to Hotelling (1947), Lowry et al. (1992) and Montgomery (2001). 

4. Applying Statistical Process Control Tools to Software Engineering 
 

To illustrate an application of a control chart, one of the most commonly used SPC tools, to a 

software process, let us take a look at the following example. A medium size software company, 

specializing in developing parsers1, has decided to monitor its source code programming process. To 

do that the company has decided to look at the defect density defined as the number of defects (e.g. 

programming errors adversely affecting software functionality) in a software module divided by the 

module size in LOC (Lines of Code). Initially 20 software modules have been selected and defect 

densities have been plotted against the sequence of modules. The resulting control chart is shown in 

Figure 2. As we see, the process is not in statistical control as Module 13 and Module 20 have 

unusually high defect densities (the plotted points outside the UCL). Furthermore, the average defect 

density in a software module is about 2.4 percent, a certainly unacceptable figure for the company. As 

such, the company decides to investigate the causes for the high defect density and eliminate them as 

soon as possible. 
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Figure 2. Defect density in software modules 
 

As a step one they look at Module 13 and Module 20 and find that the programming teams 

responsible for those two modules have a number of newcomers, perhaps in the need of an 

introductory training. Instigating the newcomers’ introduction-to-the-company training puts the source 

                                                
1 Syntactic data analyzers used in e.g. data interpreters and compliers. 
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code programming process back in a state of statistical control as well as decreases the defect density 

from 2.4 percent to 1.9 percent; see Figure 3. 

Consequently, the company is happy to be able to find and eliminate assignable causes of 

variation and thereby attain the process in statistical control. However, it is not satisfied with the fact 

that the defect density is still quite high (1.9 percent). To further improve the source code 

programming process the company has to consider making system changes as the remaining 

variability of the process can only be attributed to the chance causes of variation. Such a system 

change might include the introduction of the company-wide coding and design standards, regular 

design reviews and systematic follow ups on the deviations from the introduced standards. 
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Figure 3. Defect density in software modules before and after instigating  
the introductory training 

 
Although the example presented above is a simplification of reality, without taking into 

consideration all the complexity of the software development process, it shows how the control 

charting technique can be applied to a software process for improvement purposes. The detection of 

the assignable causes is usually done by the control chart. However, other tools including Cause and 

Effect Diagram, Five Whys and Stratification are often used to find and identify the true causes of 

variation. 

Defect density, a quality indicator plotted on the control chart above, is just one of the so 

called indirect measures used to monitor a software process. Furthermore, a number of other indirect 

measures including Programmer Productivity defined as LOC produced divided by person month of 

effort, Defect Detection Efficiency defined as the number of defects detected divided by the total 
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number of defects are also used to monitor different kinds of software processes. For further details 

about direct and indirect software measures see Fenton & Pfleeger (1997). 

 

5. Discussion 
 

There have been numerous efforts made to formalize and systematize the software 

development process over the past couple of decades including the development of Capability 

Maturity Model (CMM/CMMI) and its supporting processes, Personal Software Process (PSP) and 

Team software Process (TSP); see e.g. Humphrey (1995) and Humphrey (2000). These models and 

processes not only promote the use of statistical quality improvement tools in software engineering, 

but also make it easier to do so as they take the process view approach to software development. Both 

PSP and TSP provide numerous templates and guidelines to assist software practitioners in developing 

software products in a systematic and cost-effective way. 

From a software quality standpoint, in addition to CMM/CMMI, it is interesting to take a 

look at the following software development models: Agile Software Development (see e.g. Shore & 

Warden (2007)) - employing a flexible software development model based on shorter and rather 

frequent iterations; Extreme Programming (see e.g. Beck (2000)) - another popular light-weight 

methodology promoting source code programming in pairs, writing unit tests before programming and 

keeping close contact with the customer all along the development process; Cleanroom Software 

Engineering (see e.g. Mills et al. (1987)) – a software development methodology challenging many of 

the traditional beliefs with regard to software engineering including the deterministic nature of 

software and thereby the limited role and use of statistical methods, unfeasibility of software fault 

prediction/avoidance as well as focus on extensive source code debugging. 

Finally, it should be noted that although in this paper we mainly have focused on SPC, there 

are numerous other quality methods, of both quantitative and qualitative nature, applicable to software 

engineering. These methods include Design of Experiments (see e.g. Box et al. (1978)) - especially 

useful in the context of software testing, Quality Function Deployment (see e.g. Hauser & Clausing 

(1988)) – a methodology aimed at systematic collection of customer data and their translation into 

product or process design parameters, Failure Mode and Effect Analysis (see e.g. Stamatis (1994)) – 

used to identify and assess the risks related to products and processes subject to improvement. 
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Резюме 

 
Несмотря на то, что статистические методы управления качеством широко 

используются в традиционных отраслях производства (например, отрасли транспорта, 
электроники, химической и пищевой промышленности  и т.д.), их применение с целью 
совершенствования качества программного обеспечения довольно ограничено. Однако 
имеются примеры, которые показывают, что статистические методы управления качеством 
программного обеспечения можно довольно эффективно использовать в процессе их создания. 
В данной работе рассматривается одна из важнейших сфер статистического управления 
качеством, в частности статистическое управление процессами и обсуждаются вопросы 
возможности их применения в контексте разработки программного обеспечения.    
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