Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

APPLICATION OF DEECO FRAMEWORK TO MDVRPTW PROBLEM

Artioma Merabiani
International Black Sea University, Tbilisi, Georgia
bartender318@gmail.com
Summary
In the paper the concept of Autonomic Components Ensembles (ACE), applied to the real-
world Multi-Depots Vehicle Routing Planning with Time Windows (MDVRPTW), is proposed.
Each vehicle is associated with the corresponding autonomic component AC (a virtual machine in
datacenter) and exchange on-line information with other vehicles. Besides, ACs can reschedule
routes in order to find the acceptable alternative routes that enable vehicles to meet time windows
requirements and, at the same time, avoid the congested roads. Implementation of DEECo
(Distributed Emergent Ensembles of Components) model to create dynamic ensembles of vehicles
and non-congested route segments is also proposed in the paper. Detailed description of
components, components’ knowledge, processes and interfaces is given.
Keywords: Multi Depots. Vehicles. Routes planning. Time Windows. Autonomic
component. Datacenter. Virtual machines.
1. Introduction

In [1] we described the adaptive algorithm to solve Multi Depots Vehicle Routing
Planning with Time Windows (MDVRPTW) problem. The algorithm is aimed to account for
realistic real-world situation, such as presence of various congestion types. The congestions are the
most important critical factors for the successful and practically acceptable solution of the
MDVRPTW problem.]. Since traffic congestion cause heavy delays, it is very costly for intensive
road users such as logistic service providers and distribution firms. In particular, such delays cause
large costs for hiring the truck drivers and the use of extra vehicles, and if they are not accounted
for in the vehicle route plans they may cause late arrivals at customers or even violations of
driving hour’s regulations. Therefore, accounting for traffic congestion has a large potential for
cost savings. We have developed a modification of the ALNS algorithm [2] (written in the /sprit
framework). Namely, our algorithm takes into account a probability of links’ congestion,
estimation of probability of their release of busy route sections. Our modification of the algorithm
can plan routes for any starting and finishing nodes.

To provide the real-time adaptability the proposed approach uses the concept of autonomic
components (AC) and autonomic component ensembles (ACE)[1]. Each vehicle is associated with
the corresponding autonomic component AC (implemented as a virtual machine in datacenter)
and exchange on-line information with other vehicles. This allows a vehicle to notify other
vehicles about expected and actual congestion. Besides, ACs can reschedule routes in order to find
the acceptable alternative routes that enable vehicles to meet time windows requirements and, at
the same time, avoid the congested roads. It is necessary to point out that the algorithm of
adaptation is able to reschedule and find alternative routed for several vehicles in parallel. The
latter significantly increases the performance of proposed approach.

ACs are entities with dedicated knowledge units and resources that can cooperate while
playing different roles. ACs are dynamically organized into ACEs. AC members of an ACE are
connected by the interdependency relations defined through predicates (used to specify the
targets of communication actions. The functional description of an AC and ACE is shown on Fig.1.

102

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

Virual machines Web server
[T [S— . :
i e N =R
=) == S 4 N\ 7 |
= - 2L N

E?X i e
— Autonomic manager

Databases server

Managed element

Fig.1 Functional description of
a component

& &
TCMD and SRD
Servers databases

Fig.2 . General infrastructure

The ACs in an ACE may be implemented as virtual machines (VMs) in datacenters (ACE).
Each AC is associated with the concrete vehicle and comprehensive information of the current
location of the vehicle on the route, relevant data on its current state and etc. In our approach the
knowledge repository is used to store these data and exchange them with other ACs. Occasionally
so called spatial-temporal event (that is, a vehicle arrives to a certain service point at a certain
time) occurs. The equipment in the car (GPS receivers and GSM telephones (or some similar
wireless communications technology)) determines location using the GPS receiver and sends the
coordinates and other relevant data to the Web server. The general infrastructure of our approach
id shown in the Fig.2.

The base virtual machine VMo hosts all main structural components of proposed system:
JSpirit, MatSim, travel and congestion management database (TCMD), database of simulation
results (SRD), web servers for connection with vehicles, GPS, etc. Although VMo is permanently
used and maintained, it is convenient to represent it as a virtual machine because it will
intensively interact and exchange data with other virtual machines. each of which represents
autonomic component (AC). As it will be shown later, autonomic components are associated with
concrete vehicles and constitute an Autonomic Component Ensemble (ACE). The base VMo
executes the initial solution of MDVRPTW problem and generates the initial set of routes RI. The
input parameters, such as time windows for each service points, are held at VMo as well. After
generating the initial set of routes, new virtual machines, enumerated from 1 to nr (where nr is
the amount of routes in the initial set RI), are created. The recourses of the datacenter’s servers are
dynamically allocated to virtual machines.

In this paper we describe the usage of DEECo (Distributed Emergent Ensembles of
Components) component model [3] and its framework. This framework is applied to the
MDVRPTW's case. The detailed description of the framework is given below.

2. DEECO general concepts applied to the MDVRPTW problem

DEECo is built on top of two first-class concepts: component and ensemble [3]. A
component is an independent and self-sustained unit of development, deployment and
computation. An ensemble acts

as a dynamic binding mechanism, which links a set of components together and manages
their interaction. A grounding idea in DEECo is that the only way components bind and
communicate with one another is through ensembles. The two first-class DEECo concepts are in

103

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

detail elaborated below. An integral part of the component model is also the runtime framework
providing the necessary management services for both components and ensembles.

A component in DEECo comprises knowledge, exposed via a set of interfaces, and
processes|3]. Knowledge reflects the state and available functionality of the component (lines 6-
19). It is organized as a hierarchical data structure, which maps knowledge identifiers to values.
Specifically, values may be either potentially structured data or executable functions. In this
context, the term belief refers to the part of a component’s knowledge that represents a copy of
knowledge of another component, and is thus treated with a certain level of uncertainty as it
might become obsolete or invalid.

A component’s knowledge [3] is exposed to the other components and environment via a set
of interfaces (lines 5, 60). An interface (e.g., lines 1-2) thus represents a partial view on the
component’s knowledge. Specifically, interfaces of a single component can overlap and multiple
components can provide the same interface, thus allowing for polymorphism of components.

Component processes are essentially soft real-time tasks that manipulate the knowledge of
the component. A process is characterized as a function (lines 23-27) associated with a list of input
and output knowledge fields (line 21,22). Operation of the process is managed by the runtime
framework and consists of atomically retrieving all input knowledge fields, computing the process
function, and atomically writing all output knowledge fields [3].

Being active entities of computation implementing feedback loops, component processes are
subject to cyclic scheduling, which is again managed by the runtime framework [3]. A process can
be scheduled either periodically (line 74), i.e., repeatedly executed once within a given period, or
as triggered (line 28), i.e., executed when a trigger condition is met.

1. interface RouteSegmentsCongestionAware:

2. initialSP, routeSegment, congestionStatus, expectedCongestionInducedDelay
3. interface RouteSegmentAvailabilityAggregator:

4. position, timetable, routeSegmentsAvailability

5. component Vehicle features RouteSegmentAvailabilityAggregator:

6. knowledge:

7. position = GPS(...),

8. currentSP=(position, ...),

9. routeSegmentsAvailability=List<segmentsStatus>
10. timetable = List<TimeWindowsForSPs>,

11. route = {

12. List<SPs>,

13. onSchedule=TR

14. isFeasible=TRUE

15. 1

16. expectedCongestionInducedDelay=(...),

17. vehicleParameters=List<Parameters>,

18. costDriverWaitPayment=(....),

19. costViolationTimeWindows=(....)

20. process computeNewRoute:

21. in routeSegmentsAvailability, in timetable,
22. inout route

23. function:

24. if (Iroute.isFeasible A (costDriverWaitPayment

104

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

25. >costViolationTimeWindows))

26. route < ME.ALNS.computeRoute (position, timetable,

27. routeSegmentsAvailability)

28. scheduling: periodic(2000)

29. process checkRouteFeasibility:

30. in route, in position, in timetable, in routeSegmentsAvailabilities,
31. out route.isFeasible

32. function:

33. route.isFeasible «— ME.checkRouteFeasibility (route, position, timetable,
34. routeSegmentsAvailabilities)
35. scheduling: triggered(changed(routeSegmentsAvailabilities) V

36. changed(onSchedule))

37. process computeCostDriverWaitPayment:

38. in routeSegment,

39. in CongestionInducedDelay,

40. in vehicleParameters,

41. out CostDriver WaitPayment

42. function:

43. CostDriverWaitPayment« ME.computeCostDriver WaitPayment(routeSegment,
44. vehicleParemeters, CongestionInducedDelay)
45. scheduling: triggered(changed(changed(routeGenerated.isFeasible) V
46. changed(onSchedule) v

47. changed(routeSegmentsAvailabilities))

48. process computeCostViolationTimeWindows:

49. in routeSegment,

50. in CongestionInducedDelay,

51. in vehicleParameters,

52. out costViolationTimeWindows

53. function:

54. costViolationTimeWindows «—

55. ME.computeCostViolationTimeWindows(routeSegment,

56. CongestionInducedDelay, vehicleParameters)

57. scheduling: triggered(changed(changed(routeGenerated.isFeasible) V
58. changed(onSchedule) vV

59. changed(routeSegmentsAvailabilities))

60. component RouteSegmentsCongestion features RouteSegmentsCongestionAware:
61. knowledge:

62. initialSP=(...),

63. endSPs =List<adjacentSPs>,

64. routeSegment =(initialSP, endSP € endSPs),

65. segmentAvailability=(...),

66. congestionStatus=[congestionStatus, type, startingTime,
67. expectedCongestionClearanceTime,

68. congestionClearanceProbability],

69. expectedCongestionInducedDelay=(....)

105

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

70. process observeSegmentAvailability:

71. out segmentAvailability

72. function:

73. segmentAvailability «— MessageFromVehicle.getSegmentCurrentAvailability
74. scheduling: periodic(1000)

75. process computeCongestionInducedDelay:

76. in routeSegment,

77. in congestionDuration, in segmentNonCongestedCapacity,
78. in segmentCongestedCapacity, in arrivalRate,

79. out CongestionInducedDelay

80. function:

81. CongestionInducedDelay «

82. ME.computeCongestionInducedDelay(routeSegment,
83. congestionDuration, segmentNonCongestedCapacity,
84. segmentCongestedCapacity)

85. scheduling: triggered(changed(congestionStatus))

Referring to the MDVRPTW running example, the components (each occurring in multiple
instances) are the Vehicle and the RouteSegmentsCongestion. A Vehicle maintains a belief over
the availability of the relevant RouteSegmentsCongestion (routeSegmentsAvailability, line 9). It
uses a Adaptive Large Neighborhood Search (ALNS) library to (re-) compute its route according to
the availability belief

and its timetable (lines 20-28) every time the availability belief or route feasibility changes
(line 28). The Vehicle also checks if its route remains feasible, with respect to the corresponding
routeSegmentsAvailabilities and its route’s onSchedule propertycurrent position (lines 29-36). A
RouteSegmentsCongestion just keeps track of its available route’s segment availability and
computes

the expected Congestion Induced Delay time (lines 60-85).

An ensemble (see the description below) implements a dynamic binding among a set of
components and thus determines their composition and interaction [3]. In DEECo, composition is
flat, expressed implicitly via a dynamic involvement in an ensemble. Among the components
involved in an ensemble, one always plays the role of the ensemble’s coordinator while others
play the role of the members. This is determined dynamically (the task of the runtime framework)
according to the membership condition of the ensemble.

1. ensemble UpdateRouteSegmentAvailabilityInformation

2. coordinator: RouteSegmentAvailabilityAggregator
member: RouteSegmentsCongestionAware
membership:

3 vehicle € coordinator. routeSegmentsAvailability:

isAvailable(member.routeSegmentsAvailability)==TRUE

knowledge exchange:

coordinator: routeSegmentsAvailability «— member. routeSegmentsAvailability

0V e N W

coordinator: expectedCongestionInducedDelay «— member.

106

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

10. expectedCongestionInducedDelay
11. scheduling: periodic(2000)

As to interaction, the individual components in an ensemble are not capable of explicit
communication with the others [3]. Instead, the interaction among the components forming the
ensemble takes the form of knowledge exchange. Specifically, definition of an ensemble consists of:

o Membership condition. Definition of a membership condition includes the definition of the
interface specific for the coordinator role — coordinator interface (line 2), as well as the interface
specific for the member role (and thus featured by each member component) — member interface
(line 3), and the definition of a membership predicate (lines 4-6). A membership predicate
declaratively expresses the condition under which two components represent a coordinator-
member pair of the associated ensemble. The predicate is defined upon the knowledge exposed via
the coordinator/member interfaces and is evaluated by the runtime framework when necessary.

e Knowledge exchange. Knowledge exchange embodies the interaction between the
coordinator and all the members of the ensemble (lines 7-8); i.e., it is a one-to-many interaction
(in contrast to the one-to-one form of the membership predicate). Being limited to coordinator-
member interaction, knowledge exchange allows the coordinator to apply various interaction
policies. In principle, knowledge exchange is carried out by the runtime framework; thus, it is up
to the runtime framework when/how often it is performed. Similarly, to component processes,
knowledge exchange can be carried out either periodically or when triggered (line 11). Based on
the ensemble definition, a new ensemble is dynamically formed for each group of components
that together satisfy the membership condition.

The only ensemble of the running example is the UpdateRouteSegmentAvailability-
Information ensemble. Its purpose is to aggregate the route segments availability information of
the members, i.e. RouteSegmentsCongestions, on the side of the coordinator, i.e., Vehicle (lines 9-
10). The ensemble is formed only when a route segment is available and the expected congestion

induced delay time is acceptable.
3. jDEECo run-time realization of MDVRPTW problem [3,4]

By building on Java annotations, the mapping of DEECo concepts relies on standard Java
language primitives and does not require any language extensions or external tools [3].
An examples of an component definition has the form of a Java class:
1. @DEECoComponent
2. public class Vehicle extends ComponentKnowledge {
3 public Position position;
4. public ServicePoint currentSP
5. public List< TimeWindowsForSPs > timetable;
6 public Map<ID, segmentsStatus > routeSegmentsAvailability
7 public Route route;
8 public Delay expectedCongestionInducedDelay;
9. public List <vehicleParameters> vehicleParameters
10. public Cost costDriverWaitPayment,

11. public Cost costViolationTimeWindows
12. public Vehicle() {
13. // initialize the initial knowledge structure reflected by the class fields

107

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

4.}

15. @DEECoProcess
16. public static void computeNewRoute(

17. @DEEColIn("routeSegmentsAvailability ") @ DEECoTriggered Mapx<...>
18. routeSegmentsAvailability
19. @DEECoIn("timetable") List< TimeWindowsForSPs > timetable,

20. @DEECoInOut("route") Route route

21.) {

22. // re---compute the vehicle’s route if it’s infeasible

23. 1}

24. @DEECoProcess
25. @DEECoPeriodScheduling(2000))
26. public static void checkRouteFeasibility (

27. @DEECoIn("route") Route route,

28. @DEECoIn("timetablel") List< TimeWindowsForSPs > timetable,

29. @DEEColIn("position") Position position,

30. @DEECoOut("route.isFeasible") OutWrapper<Boolean> isRouteFeasible
31)it

32. // determine feasibility of the route

33. }

34

35. }

A component definition has the form of a Java class (see the above code). Such a class is
marked by the @DEECoComponent annotation and extends the ComponentKnowledge class. The
initial knowledge structure of the component is captured by means of the public, non-static fields
of the class (lines 3-11). At runtime, this initial knowledge structure is initialized either via static
initializers or via the constructor of the class (lines 12-14). The component processes are defined as
public static methods of the class, annotated with @DEECoProcess (e.g., lines 15-23).

The input and output knowledge of the process is represented by the methods’ parameters.

The parameters are marked with one of the annotations @DEECoIn, @DEECoOut or
@DEECoInOut, in order to distinguish between input and output knowledge fields of the process
(e.g., lines 17-20). Each annotation also includes an identifier of the knowledge field that the
associated method parameter represents. When a non-structured knowledge field constitutes an
inout/out knowledge of a process, the associated method parameter is for technical reasons
(related to Java immutable types) passed inside an OutWrapper object (e.g., line 30). Periodic
scheduling of a process is defined via the @DEECoPeriodicScheduling annotation of the process’s
method, which takes the period expressed in milliseconds in its parameter (line 25). Triggered
scheduling is defined via @DEECoTriggered annotation of the method’s parameter, change of
which should trigger the execution of the process (lines 17-19).

Below the example of an ensemble definition Java jDEECO) is given:

1. @DEECoEnsemble

2. @DEECoPeriodicScheduling(2000)
3. public class UpdateRouteSegmentAvailabilityInformation extends Ensemble {

4.
5. @DEECoEnsembleMembership
6. public static Boolean membership (

108

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

7. @DEECoIn("coordinator.routeSegmentsAvailability ")
List< segmentsStatus>,
8. @DEECoIn("member.routeSegmentsAvailability ") SegmetStatus,
9. @DEECoIn("member. expectedCongestionInducedDelay ") Delay
10.) {
11. for (RouteSegment rs : segmentRoute)) {
12. if (isAvailable(rs.routeSegmentsAvailability)==TRUE
13. return true;
14. }
15. return false;
16. }
17.
18.

19. @DEECoEnsembleKnowledgeExchange

20. @DEECoPeriodScheduling(2000))

21. public static void knowledgeExchange (

22. @DEECoOut("coordinator. routeSegmentsAvailability ") Map <...> SegmentStatus,
23. @DEECoOut("coordinator. expectedCongestionlnducedDelay ") Delay,

24. @DEEColn("member. routeSegmentsAvailability]") Map <...> SegmentStatus,

25. @DEEColn("member. expectedCongestionInducedDelay "") Delay,,

26.)

27. }

The ensemble definition takes also the form of a Java class [3]. In particular, the class is
marked with the @DEECoEnsemble annotation and extends the Ensemble class (see the above
example). Both the membership predicate and the knowledge exchange are defined as specifically-
annotated static methods of this class. While the method representing the membership predicate is
annotated by @DEECoEnsembleMembership (line 5), the method representing knowledge
exchange is annotated by @ DEECoEnsembleKnowledgeExchange (line 19).

The jDEECo runtime framework is primarily responsible for scheduling component
processes, forming ensembles, and performing knowledge exchange. It also allows for distribution
of Components [3].

As illustrated in Figure 3, it is internally composed of the management part and the
knowledge repository. The management part is further composed of two modules. One is
responsible for scheduling and execution of component processes and knowledge exchange of
ensembles. The other is responsible for managing access to the knowledge repository. Exploiting
the fact that all modules of the runtime framework implementation are loosely coupled, we are
able to introduce implementation variants for each of them. As a result, different variants can be

selected in order to reflect specific requirements imposed to the platform [3].

109

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

Component

processes &
Ensemble Eq iy
knowledge)
exchange T ; Ty T T 7
‘ Schedulingl | i Scheldulingl o | Sefieduling
Management \ Knowledge ! { Kno’ululedge 1 Knowledge
i access f) access . i access
T v T
i] e ” v - ¥ - .
Knowledge | i " - 1 1]
Repository 1 CKy :i CK3 = - \“i CK3 i 1 CKa i
—_— A _ - R — PR
Runtime framework

omavm | [mavm | [maver |

jDEECo Instance JDEECo Instance JDEECo Instance

Fig. 3: jDEECo runtime framework architecture

The role of the knowledge repository is to store the component’s knowledge (e.g., CK1 —
knowledge of component Cl1 — in Figure 3). Its responsibility is also to provide component
processes and knowledge exchange of ensembles with access to this knowledge. In fact, we
provide a local and a distributed implementation of the knowledge repository; the former is
employed for simulation and verification of the code) while the latter is used in case the runtime
framework needs to run in a distributed setting (i.e., the distribution is achieved at the level of
knowledge repository). Specifically, the distributed implementation of the knowledge repository
allows each component to run in a different Java virtual machine (in Figure 3).

The approach described above was implemented by using cloud computing service provider
Google Cloud Platform. Namely, laa$S (Infrastructure-as-a-Service) was used for creation and
deployment Virtual Machines (VM), associated with the vehicles (totally 17 VMs) and the Virtual
Machine, associated with the base Virtual machine VMo [1]. The VMo hosts all main structural
components of proposed system: JSpirit, MatSim, ALNS, travel and congestion management
database (TCMD), database of simulation results (SRD), web servers for connection with vehicles,
GPS, etc. VMs, associated with vehicles, run local reduced copies of ALNS algorithm, and local
copy of TCMD and SRD databases [1]. Payments Pay-as-you-go for consumed resources of the
Google Cloud Platform datacenter are on average 60% less for many compute workloads than
other clouds. Implementation of Autonomic Components Ensembles (ACE) on Google Cloud
Platform (and, in general, on other cloudproviders platforms) shifts most of the costs from capital
expenditures (or buying and installing servers, storage, networking, and related infrastructure) to
an operating expenses model, where customers pay only for usage of these types of resources.

References:

1. Prangishvili A., Rodonaia I., Shonia O., Merabian A. (2017). Adaptive real-world
algorithm of solving MDVRPTW (Multi Depots Vehicle Routing Planning with Time Windows)
problem, /nternational Journal of Transportation Systems, is. 2, 1-6

2. Rodonaia I., Merabian A.. (2016). Real-world applications of the vehicle routing problem
in Georgia. Journal Technical Science & Technologies (JTST), is. (2) 41 -44 November, Tbilisi.

3. Bures T., Gerostathopoulos I., Hnetynka P., Keznikl J., Kit M., Plasil F. (2014). DEECo-
an Ensemble-Based Component System. Charles University in Prague, Faculty of
Mathematics and Physics, Prague, Czech Republic.

4. D3S. Charles University in Prague. jDEECo website. Accessed April 17, 2013.
https://github.com/d3scomp/JDEECo, 2013.

110

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(23), 2017

DEECO g5690mU 359mygbgds 96535¢93m0560 oMmmol gsbx®gdols 3jmbg 89%wwmagdols
UsG®9bL3MmOEM F5GHIMYBHODIG00L sgaTa0gdol (MDVRPTW) sdm3sbolismgols

3OG0MIs 396930560
35300 BE30L LogMHMSTMMOLM MBo3zxMLOEGE G0, MOOEOLO

69bomdg

390m3535H90w0s 93¢™bmIonEmo 3033mb9gb3HJO0LAD TIBPM0 sBLLTdOl (ACE)
3063933001 299Mmygbgds Mgo® 3J0MmMOYdI0 FMOZHE ©Y3M0sb0 MMOL BIBYXMGOOL
d9D0M©39008 FJmbg LoGOBL3MOEGHM FoMIGIMEHO0DOE00L ©oggydadgdool (MDVRPTW)
00mEobobmgol. mommgmeo 3bgobs slmEo®Mgdyeeos Gglsdsdol 93EH™bmdowm®
30033mbgbEBmsb AC (396@op9dmmo dmbsggdms ©s8w98s3930L 396GMOL 30MEGHOE
056gob65Bg) o Mm39MsBH0s© (on-line) (33¢00l 0bBMOTo305L Lb3s 96796706, ots
5dols, AC bgmobes 2939536 FoMTOHNYBHIOL, Momd FooMML S EHIMbsEoMmo 890930,
HMIgoi3 ©993059MmBogdL EOMOL GsbxMmgd0l dmmbmgbgdl, s, %9539 MM, dmabobl
399935000 2H900L dmbs339mgd0lL Fgdmgsls. 9dmmogsbgdeos DEECo (g9bsfoegdryeo
Logobggdm 3m33mbgb3Hgdol sbLLddEd0) FMmEIWwolL AobbmME30gMgds gogzewo b
39053300000 FoMIOMEBHOL dmbs33900gd0L s F56496gd0l ©0bsdo3MmEO bLEFdEYdOL
d9Lodabges. BodMmddo dm3gderos 3m33Mmbgb3godol, 3mbol d5HgdoL, 3MMm3gLgdol o

06390390900l GO0 S0HgMs.

I[TPUMEHEHHWE CPEZIbI DEECO JIJIA 3AZJAYN INTAHWUPOBAHUA MYJIBTH-
T'APAJXKHBIX ABTOMOBWIBHBIX MAPIIPYTOB CO BPEMEHHBIMHY OI'PAHUYEHWAIMU
(MDVRPTW)

MepabsH A.

MexayHaponusiit Y HuBepcureT Yeproro mops, Toumucu, I'pysus

Pesiome

[Tpennoxen Meron NpuMeHeHUs KOHIenuuu AncamGieii ABTOHOMHBIX KoMIoHEHTOB
(ACE) pna mpoGimeMbl IIAHWPOBAHWUS MYJIBTH-TAPAXKHBIX aBTOMOOMJIBHBIX MAapIIPyTOB CO
BpeMeHHbIME orpaHudeHuaMu (MDVRPTW) B peanuctrueckux ycroBuax. Kaxmerit aBToMOOHIB
aCCOLMUPOBAH C COOTBETCTBYIONIM aBTOHOMHBIM KOMIIOHeHTOM AC (TIpe/icTaBlIeHHBIM BUPTYalb-
HOH MalIMHOW B IleHTpe OOpabOTKM [JAHHBIX) M OIEPAaTUBHO OOMeHMBaeTcs MHpopMauueil ¢
Ipyrumu aBToMoOmiIsMu. Kpome Toro, aBToHOMHbIE KOMIIOHEHTBI MOTYT IIOBTOPHO ITPOM3BOAMTD
IJTAHUPOBAaHME MApUIPYTOB [JI HAXOXAEHHSA IPHEeMJIEMBIX aJTbTePHATUBHBIX IIyTel, KOTOpBIE
IIO3BOJIAT YZ,OBJIETBOPATH BPEMEHHbIE OTPAaHUYEHUS W, B TO XK€ BpeMs, 00XOAUTh HEIPOXOAMbIE
ydacTku MapumpyToB. [Ipenioxkena peanusanus mratdopmsl Mogesneit DEECo (Pactpeznenenusie
UYpessbryaitusie Ancam6in KomioHeHTOB) And co3jaHusA AUHAMUYECKHUX aHcaMOseidl aBTOMO-
Owrell ¥ He3aTOPeHHBIX YYaCTKOB MapuIpyToB. /laHO meTanpHOe OIMMCAaHME KOMIIOHEHTOB, 0asbl

3HAHUM, IPOILECCOB U MHTePHEICoB.

111

