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Summary  

In this paper fluid flow into the porous media is discussed. With conjunction of Diffusion 

equation, according to Darcy’s law and conservation of mass equation,  and Pore-Solid Fractal 

model is created new model that explains fractal look on fluid flow in porous media. The new – 

fractalization coefficient is proposed. This approach is inverse perspective of fluid flow into 

ground, where new property of homogenous liquid is got from characteristics of ground. 
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1. Diffusion Equation for Fluid flow in Porous Media 

Transient flow of a fluid through a porous medium is governed by a certain type of partial 

differential equation known as a diffusion equation. In order to derive this equation, we combine 

Darcy’s law, the conservation of mass equation, and an equation that describes the manner in 

which fluid is stored inside a porous rock. Let’s step by step lead ourselves to diffusion equation. 

 1.1.  Darcy’s Law 

 The basic law governing the flow of fluids through porous media is Darcy’s law, 

which was formulated by the French civil engineer Henry Darcy in 1856 on the basis of his 

experiments on vertical water filtration through sand beds. Darcy found that his data could 

be described by 

� =
���(�����)

�
                 (1) 

where: P = pressure [Pa], ��= density [kg/m3], g = gravitational acceleration [m/s2], z = vertical 

coordinate (measured downwards) [m], L = length of sample [m], Q = volumetric flowrate [m3/s], 

C = constant of proportionality [m2/Pa s], A = cross-sectional area of sample [m2]. 

Subsequent to Darcy’s initial discovery, it has been found that, all other factors 

being equal, Q is inversely proportional to the fluid viscosity, ��[Pa ��s] . It is therefore 

convenient to factor out �, and put C = k/���where k is known as the permeability, with 

dimensions [m2]. 

It is also more convenient to work with the volumetric flow per unit area, q = Q/A. 

Darcy’s law is therefore usually written as 
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�
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�
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                     (2) 

where the flux q has dimensions of [m/s]. It is perhaps easier to think of these units as 

[m3/m2s]. 
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 For transient processes in which the flux varies from point- to-point, we need a 

differential form of Darcy’s law. In the vertical direction, this equation would take the form the 

minus sign is included because the fluid flows in the direction from higher to lower potential. 

The  differential  form  of  Darcy’s  law  for  one-dimensional, horizontal flow is 
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�
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��
     (3) 

The permeability is a function of rock type, and also varies with stress, temperature, etc., 

but does not depend on the fluid; the effect of the fluid on the flow rate is accounted for by 

the viscosity term in eq. (4) or (5). 

Permeability has units of m2, but in petroleum engineering it is conventional to use 

„Darcy” units, defined by 1Darcy=0.987x10-12m2≈10-12m2   

 The Darcy unit is defined such that a rock having a permeability of 1 Darcy would 

transmit 1 cc of water (with viscosity 1 cP) per second, through a region of 1 sq. cm. 

cross-sectional area, if the pressure drop along the direction of flow were 1 atm per cm. 

 The numerical value of k for a given rock depends on the diameter of the pores in 

the rock, d, as well as on the degree of interconnectivity of  the  void  space.  Very  

roughly  speaking, � = ��/1000k. Typical values for unfractured rock are given in the 

following table: 

Rock Type k (Darcies) k (m2) 

coarse gravel 
10

3 
– 10

4
 10

-9 
- 10

-8
 

sands, gravels 
10

0 
– 10

3
 10

-12 
- 10

-9 

fine sand, silt 
10

-4 
- 10

0
 10

-16 
- 10

-12 

clay, shales 
10

-9 
- 10

-6
 10

-21 
- 10

-18 

limestones 
10

0 
- 10

2
 10

-12 
- 10

-10 

sandstones 
10

-5 
- 10

1
 10

-17 
- 10

-11 

weathered chalk 
10

0 
- 10

2
 10

-12 
- 10

-10 

unweathered chalk 
10

-9 
- 10

-1
 10

-21 
- 10

-13 

granite, gneiss 
10

-8 
- 10

-4
 10

-20 
- 10

-16 

 

Darcy’s law is a macroscopic law that is intended to be meaningful over regions that are 

much larger than the size of a single pore. In other words, when we talk about the permeability at 

a point “(x,y,z)” in the reservoir, we cannot be referring to the permeability at a mathematically 

infinitesimal “point”, because a given point may, for example, lie in a sand grain, not in the pore 
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space The property of permeability is in fact only defined for a porous medium, not for an 

individual pore. Hence, the permeability is a property that is in some sense “averaged out” over a 

certain region of space surrounded the mathematical point (x,y,z). This region must be large 

enough to encompass a statistically significant number of pores.  

1.2. Conservation of mass equation 

 Darcy’s law in itself does not contain sufficient information to allow us to solve 

transient (i.e., time-dependent) problems involving subsurface flow. In order to develop a 

complete governing equation that applies to transient problems, we must first derive a 

mathematical expression of the principle of conservation of mass. 

 Consider flow through a one-dimensional tube of cross-sectional area A; In particular, 

let’s focus on the region between two locations � and � + ∆�: 

 The main idea behind the application of the principle of conservation of mass is 

Flux in - Flux out = Increase in amount stored. 

 Consider the period of time between time � and time � + ∆�. The amount of fluid mass 

stored in the region is denoted by m, V is the pore volume of the rock contained in the slab 

between � and +∆� . We have the formula m = ρϕV = 	ρϕA∆x . Where  �- is porosity.  

From this the conservation of mass equation is derived: 

−A�ρq(x + ∆x)– 	ρq(x)� =
�(��)

��
�∆� .                (4) 

Here we temporarily treat ρq as a single entity. 

For one-dimensional flow, such as through a cylindrical core A is constant. So divide 

both sides by A∆x, and let ∆x → 0.  We will get the basic equation of conservation of mass 

for 1-D linear flow in a porous medium. It is exact, and applies to gases, liquids, high or low 

flowrates, etc. 

−
�(��)

��
=

�(��)

��
 .      (5) 

1.3 Diffusion Equation 

Now by Combining Darcy’s law to mass conservation equation and then using chain rule of 

differentiation we can get the following: 
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 ,       (6) 

where C� is the compressibility of the fluid, 

C���is the compressibility of the rock formation. 

 Now look at the left-hand side of eq. (5). The flux q is given by Darcy’s law eq. (3): 
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Now equate eqs (6) and (7): 
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Practice shows that, for liquids, the nonlinear term �� �
��

��
�
�
 in eq. (8) is small. In practice, it is 

usually neglected. So we have the one-dimensional, linear form of the diffusion equation: 

 

��

��
=

�

����

���

��� ,     (9) 

where C�	 is total compressibility - C� = C� + C�. 

 

2.  Pore-Solid Fractal Model 

 The Pore-Solid Fractal model originates from two studies. Neimark  developed the  ‘self-

similar multiscale percolation system’, a representation of a disordered, disperse medium that 

exhibits a fractal interface between solid and pore phases. Perrier Independently proposed a 

multiscale model of soil structure which combines a fractal pore number–size distribution and a 

fractal solid number–size distribution. Although these two models have been developed in 

different contexts, using slightly different definitions, and presenting different local geometrical 

shapes, they are nevertheless equivalent. 

 This homogeneous material can be identified either with the solid phase of the porous 

medium (shown in black in Fig.1) (‘pore mass fractal’), or the pore phase (shown in white in Fig.1) 

(‘solid mass fractal’). 

D is fractal dimension, d – Euclid dimension, i – number of iterations.  

Two main options have been considered in previous studies: 1. Iterations are carried out ad 

infinitum, and the fractal set of (��). � subregions vanishes. The model represents only solid in the 

so-called pore mass fractal  or only pores  in  the  solid  mass  fractal. 2. A  lower  cutoff  of  scale  

is sumed,  considering  a  finite  number  of  recursive  iterations  m.  The (��). m subregions 

created at the last iteration step  � = � m will undergo no further division and the fractal set is 

assumed to model the complementary phase: in a pore mass fractal it is associated with the pore 

phase (shown in very light gray) and in a solid mass fractal it is associated with the solid phase 

(shown in black). 
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 Following the approach of Neimark, which combines pores and solids in the model in an 

interesting symmetrical setting, we define the (1 − �). proportion of the generator as a mixture of 

pore and solid defined as follows: 

(1 − �) = (� + �) , 

 where x denotes the proportion of pore phase, y the proportion of solid phase and z 

represents the proportion of the generator where the whole shape is replicated at each step. Solids 

and pores generated at each step are kept whereas the fractal set is transformed.  

Derived from mentioned fractal dimension is : 
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� = � +
���(�����)

����
    (10) 

 

shows that for a given Euclidean dimension  d, the value of the fractal dimension D of a PSF 

model depends only on the value of parameters n, x and  y. 

The �(1 − �) subregions are divided into  �� = 4  pore subregions (white) and �� = 3	solid 

subregions (black). The fractal set (light gray). Corresponds to �� = 2 subregions where the whole 

shape is replicated at next iteration step.  

 Parameters x, y and z can be 

considered as probabilities � + � + � = 1 

and mathematical calculations can be 

done in a probabilistic way. However, 

for sake of simplicity, we will consider 

here that x, y and z are proportions and 

��,��,�� refer to the number of 

subregions of each type, to get simple 

proofs based only on counting. 

 

Since x represents the proportion of pores kept at step 1 by the generator, �� is the 

proportion of pores added in the replicates generated at step 2, and so on. Thus the porosity �� at 

step � is the following sum: 

� = � + �� + ��� + ⋯+ ����� = � ∑ �� = �(
����

���
)���

���    (11) 

From where we can get formula of porosity: 

                               � =
�

���
(1 − ��)                                   (12) 

 

The  number  of  iterations  �  increases  to  infinity,  �� → 0. Eq (12) shows that a PSF model 

exhibits a finite value of the total porosity. 

3. Fractal Representation of Permeability  

The main purpose of this paper is an attempt to represent fluid permeability in fractal terms. 

Let’s conjoin fluid diffusion equation eq. (9) and total porosity equation eq (12) by equaling 

porosities of both sides:   

�

���
(1 − ��) =

�

���
��

��

���

���                                  (13) 

In terms of experiment where fluid flux is small enough we can neglect pressure, P≈0; 

Consequently we can represent permeability as follows � =
�

���
.   

So we have:  

�

���
(1 − ��) =

�

���
                                   (14) 
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Left hand side of equation above represents fractal model of total porosity of porous media, 

while right hand side is porosity formula represented by fluid characteristics. This approach helps 

us measure fluid permeability with fractal terms e.i. experimentally if we will picture fractal 

representation of certain media and then we pour certain fluid on it so that flux is small enough 

(� → 0) and therefore P≈0. Then after selecting maximal permeability level (via microscopic 

camera) of that fluid, we will be able to link fractal measures of the media at that level at � = � 

iteration, where liquid will stop leaking into pores, to liquid characterizations and get some 

coefficient that we will call liquid fractalization coefficient for that certain liquid. 

Measuring this coefficient for other one phase transportations of liquids will give us 

systemized set of coefficients that in the future can be used as additional characteristic of liquids. 

This approach is inverse perspective of fluid flow into ground or rocks. Unlike traditional 

models where scientist first measure liquid characteristics, like viscosity or density, and then from 

this basis calculate permeability of fluid in media, by knowing this new fractalization coefficient 

we will be able to measure permeability of certain fluid into soil, clay, silt, or etc. only by knowing 

local porous media environment.  

We hope that this model, only in practically refined form, will find its ground and be useful 

for water industry, oil industry or for other fields hydrogeology. 
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forian gamtarSi siTxis filtraciis fraqtaluri  

modelireba 

daCi janeliZe  

saqarTvelos teqnikuri universiteti 

reziume 

ganxilulia forian gamtarSi erTgvarovani siTxis gadinebis modelis Seqmnis 

sakiTxi. Sedgenilia difuziis gantoleba erTfaziani gadinebisTvis darsis kanonze 

dayrdnobiT. aseve ganxilulia myar-foriani fraqtaluri modeli. am ori modelis 

SejerebiT miRebulia forian gamtarSi siTxis gadinebis fraqtaluri modeli. 

SemoTavazebulia siTxis axali maxasiaTebeli e.w. dafraqtalebis koeficienti. es midgoma 

aRwers forian gamtarSi siTxis gadinebis Sebrunebul variants, roca gamtaris Tvisebidan 

gamomdinare vadgenT erTgvarovani siTxis maxasiaTebels.  

 

ФРАКТАЛЬНОЕ МОДЕЛИРОВАНИЕ ФИЛЬТРАЦИИ ЖИДКОСТЕЙ  

В ПОРИСТЫХ СРЕДАХ 

Джанелидзе Д. 

Грузинский Технический Университет 

Резюме 

Рассматривается вопрос создания модели движения однородных житкостей в 

пористых средах. Построено уравнение диффузии для однофазового движения на основе 

закона Дарси. Рассмотрена также пористо-твердая фрактальная модель. На основе 

согласования этих моделей создана новая фрактальная модель, которая объясняет 

фильтрацию жидкостей в пористых средах. Предложена новая характеристика жидкости, 

т.н. коэффициент дефрактализации. Этот подход описывает обратный вариант движения 

жидкости в пористых средах, когда исходя из свойства среды строятся характеристики 

однородной жидкости.   


