
Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

240

USING OF INFORMATION THEORY METRICS IN SECURITY MODELING OF

AUTONOMIC CLOUD COMPUTING .

Rodonaia Irakly, Musa Medhat, Rodonaia Vakhtang

Faculty of Computer Technologies and Engineering

International Black Sea University, Tbilisi, Georgia

irodonaia@yahoo.com

Summary

As clouds are complex, large-scale, and heterogeneous distributed systems management of their

resources is a challenging task. It requires co-optimization at multiple layers (infrastructure, platform,

and application) exhibiting autonomic properties. Autonomic systems exhibit the ability of self-

monitoring, self-repairing, and self-optimizing by constantly sensing themselves and tuning their

performance. The notions of autonomic components (ACs) and autonomic-component ensembles

(ACEs) are considered in the paper. A language for coordinating ensemble components (SCEL) is

used to represent specificity of security issues in autonomic computing environment.

Keywords: cloud computing. Autonomic component. Autonomic ensemble. Formal modeling.

Security.

1. INTRODUCTION

As Clouds are complex, large-scale, and heterogeneous distributed systems (e.g., consisting of

multiple Data Centers, each containing 1000s of servers and peta-bytes of storage capacity),

management of their resources is a challenging task. They need automated and integrated intelligent

strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient.

However, management of large-scale and elastic Cloud infrastructure offering reliable, secure, and cost-

efficient services is a challenging task [1]. It requires co-optimization at multiple layers (infrastructure,

platform, and application) exhibiting autonomic properties. Effective management of services becomes

fundamental in platforms that constitute the fabric of computing Clouds; and to serve this purpose,

autonomic models for PaaS (Platform as a Service) software systems are essential.

Autonomic systems exhibit the ability of self-monitoring, self-repairing, and self-optimizing by

constantly sensing themselves and tuning their performance. In other words, they are self-managing, i.e.

capable of continuously self-monitoring and selecting appropriate operations. To capture the relevant

features and challenges, the „Interlink WG on software intensive systems and new computing

paradigms‟ [2] has proposed to use the term ensembles.

The notions of autonomic components (ACs) and autonomic-component ensembles (ACEs) [3,4]

have been put forward as a means to structure a system into well understood, independent and

distributed building blocks that interact in specified ways. ACs are entities with dedicated knowledge

units and resources that can cooperate while playing different roles. Awareness is made possible by

providing ACs with information about their own state and behavior that can be stored in their

knowledge repositories. These repositories also enable ACs to store and retrieve information about their

working environment, and to use it for redirecting and adapting their behavior. Each AC is equipped

with an interface, consisting of a collection of attributes, such as provided functionalities, spatial

coordinates, group memberships, trust level, response time, etc.

Attributes are used by the ACs to dynamically organize themselves into ACEs. Individual ACs

not only can single out communication partners by using their identities, but they can also select

partners by exploiting the attributes in the interfaces of the individual ACs. Predicates over such

attributes are used to specify the targets of communication actions, thus providing a sort of attribute-

based communication. In this way, the formation rule of ACEs is endogenous to ACs: members of an

ensemble are connected by the interdependency relations defined through predicates. An ACE is

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

241

therefore not a rigid fixed network but rather a highly dynamic structure where ACs' linkages are

dynamically established.

The proposed abstractions are the basis of SCEL (Software Component Ensemble Language), a

kernel language for programming autonomic computing systems.

The syntax of SCEL is presented in Table 1. The basic category of the syntax is that relative to

PROCESSES that are used to build up COMPONENTS that in turn are used to define SYSTEMS.

PROCESSES specify the flow of the ACTIONS that can be performed. ACTIONS can have a

TARGET to characterize the other components that are involved in that action.

Table 1. SCEL syntax

PROCESSES are the active computational units. Each process is built up from the inert process

nil via action prefixing (a.P), nondeterministic choice (P1+P2), controlled composition (P1[P2]),

process variable (X), and parameterized process invocation (A(p)). The construct P1[P2] abstracts the

various forms of parallel composition commonly used in process calculi. Process variables can support

higher-order communication, namely the capability to exchange (the code of) a process, and possibly

execute it, by first adding an item containing the process to a knowledge repository and then

retrieving/withdrawing this item while binding the process to a process variable. We assume that A

ranges over a set of parameterized process identifiers that are used in recursive process definitions. We

also assume that each process identifier A has a single definition of the form A(f) P where all free

variables in P are contained in f and all occurrences of process identifiers in P are within the scope of

an action prefixing. p and f denote lists of actual and formal parameters, respectively.

Processes can perform five different kinds of ACTIONS. Actions get(T)@c, qry(T)@c and

put(t)@c are used to manage shared knowledge repositories by with drawing/retrieving/adding

information items from/to the knowledge repository c. These actions exploit templates T as patterns to

select knowledge items t in the repositories. They rely heavily on the used knowledge repository and

are implemented by invoking the handling operations it provides. Action fresh (n) introduces a scope

restriction for the name n so that this name is ensured to be different from any other name previously

used. Action new creates a new component . . An autonomic component

 is graphically depicted in Figure 1:

Fig.1 SCEL components

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

242

 An interface publishing and making available structural and behavioral information about the

component itself in the form of attributes. Among them, attribute id is mandatory and is bound to the

name of the component. Notably, component names are not required to be unique; this would allow us

to easily model replicated service components.

 A knowledge repository managing both application data and awareness data, together with

the specific handling mechanism. The knowledge repository of a component stores also the whole

information provided by its interface, which therefore can be dynamically manipulated by means of the

operations provided by the knowledge repositories‟ handling mechanisms

 A set of policies regulating the interaction between the different internal parts of the

component and the interaction of the component with the others.

 A process P together with a set of process definitions that can be dynamically activated. Some of

the processes in P perform local computation, while others may coordinate processes interaction

with the knowledge repository and deal with theissues related to adaptation

Finally, SYSTEMS aggregate COMPONENTS through the composition operator .

The operational and system semantics of SCEL is described in detail in [4].

Access control is a fundamental mechanism for restricting what operations users can perform on

protected resources. Many models of access control have been defined in the literature. One of them is

the Policy Based Access Control model [5]. In this model, a request to access a protected resource is

evaluated with respect to one or more policies that define which requests are authorized. An

authorization decision is based on attribute values required to allow access to a resource according to

policies stored in system‟s components. Component attributes are here used to describe the entities that

must be considered for authorization purposes. On this basis the SACPL (SCEL Access Control Policy

Language), a simple, yet expressive, language for defining access control policies and access requests,

is considered [4].

Policies are hierarchically structured as trees. A policy is either an atomic policy or a pair of

simpler policies combined through one of the decision combining operators p-o (permit override) and

d-o (deny override). An atomic policy is a pair made of a decision and a target. The target defines the

set of access requests to which the policy applies. The decision, i.e. permit or deny, is the effect

returned when the policy is „applicable‟, namely the access request belongs to the target. Otherwise, i.e.

when a request does not belong to the policy‟s target, the policy is „not-applicable‟, which in this

simplified setting has the same effect as deny. A target is either an atomic target or a pair of simpler

targets combined using the standard logic operators and and or. An atomic target is a triple denoting the

application of a matching function to values from the request and the policy, like e.g. greater-

than(subject.skill; threshold – object.dependability). Finally, Expressions are built from values and

attributes through various operators. SACPL requests, ranged over by ρ, are functions mapping names

to elements and are written as collections of pairs of the form (name; element). A request‟s element can

be a knowledge item, a component‟s interface, the type of an action, etc. In its turn, an interface

provides a set of attributes characterizing the corresponding component, which can be either the subject

or the object of the request. A typical example of request is as follows:

Here, the subject identified by the interface requires the authorization to withdraw the

item t from component . For example, the request‟s subject is obtained by calling ρ

(subject), which returns .

Autonomic computingis widely used in spatial-temporal data analysis for online prediction of

dengue fever outbreaks[1],the science cloud [6], real time collection and dissemination of personal

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

243

health data (ECG: electrocardiograms) to patients and health-care professionals [7], etc. Cloud

computing in these different areas can be thought of as a collection of desktops, servers, notebooks or

virtual machines running the Cloud Platform (CP). Each (virtual) machine is running one instance of

the Cloud Platform called Cloud Platform instance (CPi).Each CPi is considered to be a service

component. Multiple CPs communicate over the Internet (IP ptotocol), thus forming a cloud and within

this cloud one or more service component ensembles (Figure 2):

Fig.2. Cloud Platform

Each CPi has knowledge. The knowledge consist of what the CPi knows about itself (properties

set by developers), about its infrastructure (CPU load, available memory), and about other CPis

(acquired through the network). Since there is no global coordinator, each CPi must build its own

world view and act upon the knowledge available. The CPi may acquire knowledge about its

infrastructure using an infrastructure sensing plug-in, which provides information about static values

such as processor speed, available memory, available disk space, number of cores etc. and dynamic

values such as currently used memory, disk space, CPU load, characteristics of current traffic flowing

through the CPi,etc).

Each CPi has also a connectivity component which enables it to talk to other CPis over the

network. The protocol followed by these communications must enable CPis to find one another and

establish links, for example by manually entering a network address or by a discovery mechanism.

Furthermore, CPis must be able to query others for knowledge and distribute their own. Finally, the

protocol must support exchange of data and applications.

Each CPi is considered to be autonomic in the sense that it may join and leave the cloud at will.

The cloud is thus a dynamic cloud and works without a central coordinator in a peer-to-peer manner.

2. STATEMENT OF THE PROBLEM

The following scenario is considered. A singleton application currently runs on one of the VMs

at Data Center 2 (VM7 in Service Component Ensemble 2. This application runs alone on its node

and,since the application is a singleton, no additional instances can be spawned. During the sessionthe

application experiences consistently high CPU load. This increase may be caused either by legitimate

traffic overload or by coordinated attacks (DDOS) launched against the PaaS provider. The latter might

be wrongly assumed to be legitimate requests and resources would be scaled up to handle them. This

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

244

would result in an increase in the cost of running the application (because provider will be charged by

these extra resources) as well as a waste of energy. Hence, it is necessary to distinguish between these

two cases, the earlier this distinction is made, the higher is the degree of protection of the application

from failure and poor performance.To provide this protection, the following security measures are

suggested. The traffic flows through the node (CPi) has to be analyzed using Kolmogorov complexity

metrics (see later in the text). During the session the constant monitoring of the metric (by the special

probe implemented in the separate module), along with measure of CPU load, is being executed.

If the simultaneous increase of these two metrics is registered at least in 3 successive time units,

the conclusion about the real treat of the DDOS attack must be drawn. As a result, the application has to

migrate from the CPi where it was running to another CPi (which may belong to the same ensemble or

other ensemble). A new CPi must be found according to some requirements: complexity level and

CPU load must be rather low, integrated hardware index (which includes such indicators as processor

speed, available memory, available disk space, number of cores, etc) must correspond to the application

resource requirements (they are published in the interface of the CPi where the application is running).

If the required CPi is found, the application has to migrate there as soon as possible and stop its

running on the “old” CPi.

We assume that, other than id, the interfaces provide the attributes “KLDiv”, “CPULoad” and

“Hardware” stores a context information, updated by the underlying infrastructure (usually, from the

firewalls, gateways or special probes) and are `sensed' by the managed element.

The CPi where the application is running is the SCEL component:

The autonomic manager AM is defined as follows:AM PKLDivMonitor [PCPULoad]

PKLDivMonitorr qry(“KLDivLevel”, “high”) @ self.

get(“KLDivHigh”, false) @self.

put((“KLDivHigh”, true) @self.

qru(“KLDivLevel”,”low”)@self.

get(“KLDivHigh”,true)@self.

put(“KLDivHigh”,false)@self.PKLDivMonitor

PCPULoad qry(“CPUloadLevel”,“low”)@ self. get(“CPULow”, false) @self.

put((“CPULow”, true) @self. qru(“CPUloadLevel”,”high”)@self.

get(“CPULow”,true)@self.

put(“CPULow”,false)@self. PCPULoad

PMigrateCP i qry(“required_functionality_id”, ?X)@ self. /* retrieving from the knowledge repository

the process implementing a required functionality id and bounding it to a process variable X */

get(“required_functionality_id_args”, ?y,?z) @self.

qry(“CPiId”, ?c) @ . /* searching an item c among components belonging to the ensemble

identified by predicate */

fresh(n). /* fresh name n is used for coordination purposes */

put(“required_functionality_id_params”,n,y,z)@c /* storing actual parameters of theprocess to be

executed in the found component c : moving from VM7 to MV5 on fig.2 */

get(“required_functionality_id”, “terminated”,n) @self. /* removing the process from the knowledge

repository of „old‟ CPi */

get(“required_functionality_id”, X) @self.nil

/* eliminating the process in „old‟ CPi */

Here the predicate is determined as follows:

 ()=(. KLDivLevel=”low”) (.CPULoad <75) (.Hardware>=5))

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

245

and is used for group-oriented communication in the action qry(“CPiId”, ?c) @ . This predicate

defines the ensemble of components which publish in their interfaces attributes “KLDivLevel”,

“CPULoad” and” Hardware”along with relevant values. We assume that these attributes are provided

by the interface of each component and obtain dynamically updated values from corresponding probes

(sensors) as a result of constant monitoring (sensing) of the computing environment.

We assume also that the attribute “KLDivLevel” (Kullback-Leibler divergence) gives an

indication in the range [0:m] , m-some positive real number (see explanation below in the text) of data

flow through the ensemble, the attribute “CPULoad” – in the range [0:100], the attribute “Hardware” –

in the range [0:10]. In this context the meaning of the predicate is as follows: find a component CPi

(or components) where the “ComplexityLevel” is low (i.e. less than 0.8), “CPULoad” is less than 75

and integrated hardware index “Hardware” is more than 5.

The process Ps executed by the managed element ME is:

Ps get (“required_functionality_id_params”,?id, ?y, ?z)@self.

get(“load”, ?l) @self.

get(“hardware”, ?h) @self.

put(“load”, (l+5))@self.

put(“hardware”, (h-10))@self.

Ps [X(id, y, z)] /* the new process (additionally to the already running process Ps), having actual

parameters id, y, z,starts */

The policy in force at the component results from the composition, by means of the

p-o (permit override) and d-o (deny override) operators, of the following policies:

 deny; target:{} * deny all *

e permit ; target:{equal(subject: id; n) and *permit local qry*

 equal(object: id; n) and

 equal(action; qry) and

 equal(subject: KLDivLevel; level) and

 less-or-equal-than(CPULoad; treshold) }

 permit ; target:{equal(subject: id; n) and * permit remote qry *

 equal(object: id; m) and

 equal(action; qry) and

 equal(subject: KLDivLevel; level) and

 less-or-equal-than(CPULoad; treshold) }

 permit;target:{equal(subject:id;n)and * always permit local put *

 equal(object: id; n) and

 equal(action; put)}

permit;target:{equal(subject:id;n) and *always permit remote put*

 equal(object: id; m) and

 equal(action; put) }

 deny;target:{equal(subject: id; n) and *always deny remote get *

 equal(object: id; m) and

 equal(action; get) }

3. DETECTION OF DDOS ATTACK USING KULLBACK-LEIBLER

DIVERGENCE METRIC

Information theory based metrics enable sophisticated anomaly detections directly with the whole

traffic that are difficult to provide with simpler metrics, like aggregated traffic workload, number of

packets or single host traffic. The Kullback-Leibler divergence equation [8] is:

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

246

where the index i in front of the right part of the equation stands to denote: .

A low DKL value means a high similarity in the two probability distributions, on the other hand,

high divergence values correspond to low similarity. Port and address IP distributions are highly

correlated in network traffic. For this reason we only considered source and destination IP. Network

flows are aggregated into time blocks of a fixed size (1 minute by default). Let be the number of

flows that cross themonitored network in a time block. Let be the number of flows that have IPi

assource (or destination) address. We associate pi to the packet distribution over a time block t and qi

to the packet distribution of the previous time block t −1:

The Kullback-Leibler divergence is computed as follows:

So if the DKL during 2 succesive time moments is near to zero, it means that patterns of IP

addresses (source or destination) in packets are the same or very close. It can be considered as DDoS

(or DoS) attacks (depending on combination of source od destination addresses patterns)

REFERENCES:

[1] Rajkumar Buyya, Rodrigo N. Calheiros1, and Xiaorong Li. “Autonomic Cloud

Computing: Open Challenges and Architectural Elements”, Cloud Computing and Distributed Systems

(CLOUDS) Laboratory Department of Computing and Information Systems The University of

Melbourne, Australia

[2] InterLink, P.: http:// interlink.ics.forth.gr /central.aspx (2007)

[3] ASCENS, P.: http://www.ascens-ist.eu/ (2010)

[4] Rocco De Nicola, Michele Loreti, Rosario Pugliese, Francesco Tiezzi.“SCEL- a Language

for Autonomic Computing”. ASCENS project , Technical report, January 2013

[5] NIST: A survey of access control models (2009) http://csrc.nist.gov/news_events/ privilege-

management-workshop/PvM-Model-Survey-Aug26-2009.pdf.

[6] P. Mayer, C. Kroiss, J.V.: Specification: The Science Cloud Case Study.Overview and

Scenarios. Technical Report (June 2012)

[7] SurajPandey, William Voorsluys, Sheng Niu, AhsanKhandoker, RajkumarBuyya.: An

autonomic cloud environment for hosting ECG data analysis services. Future Generation Computer

Systems 28 (2012),pp.147-154, Elsevier

[8] D. Vitali,A.Villani, A.Spognardi, R.Battistoni, L.Mancini.”DDoS Detection with

Information Theory Metrics and Netflow (A real case), SECRYPT 2012-International Conference on

Security and Cryptography”, pp.172-181.

i

http://csrc.nist.gov/news_events/

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

247

informaciuli Teoriis metrikebis gamoyeneba avtonomiuri

Rrublovani gamoTvlebis usafrTxoebis modelirebaSi

irakli rodonaia, medxat musa, vaxtang rodonaia

Savi zRvis saerTaSoriso universiteti

reziume

ganixileba Rrublovani gamoTvlebis (cloud computing) sistemebi, rogorc rTuli,

farTomasStabiani da araerTgvarovani ganawilebuli sistemebi. maTi marTva sakmaod

rTuli amocanaa da moiTxovs erTobliv optimizacias mraval doneze (infrastruqturis,

platformis, da gamoyenebiTi nawilis) da amJRavnebs mkacrad avtonomiur Tvisebebs.

avtonomiuri sistemebi xasiaTdeba TviT-monitoringis, TviT-gamosworebis, da TviT-

optimizaciis unarebiT sakuTari komponentebis mudmivi sensoruli dakvirvevbis meSveobiT.

naSromSi ganxilulia avtonomiuri komponentebis, avtonomiuri ansamblis da avtonomiuri

ansamblebis koordinaciis ena SCEL

ИСПОЛЬЗОВАНИЕ МЕТРИК ТЕОРИИ ИНФОРМАЦИИ В

МОДЕЛИРОВАНИИ БЕЗОПАСНОСТИ ДЛЯ АВТОНОМНЫХ

ОБЛАЧНЫХ ВЫЧИСЛЕНИЙ

Родоная Иракли, Муса Медхат, Родоная Вахтанг

Международный университет Черного моря

Резюме

Так как облачные (cloud) вычисления выполняются в сложных, широкомасштабных,

неоднородных распределенных системах, управление ими представляет собой весьма

трудную задачу. Требуется совместная оптимизация на многих (инфраструктурном,

платформенном, и прикладном) уровнях, при этом проявляется их строго автономный

характер. Автономные системы характеризуются само-мониторингом, само-

восстановлением (исправлением), и само-оптимизацией, происходящим за счет постоянного

сенсорного контроля собственных компонентов. В статье рассматриваются специфика

автономных компонентов,автономных ансамблей, а также язык координации автономных

ансамблей SCEL.

