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Summary

The study of financial systems requires methods of analysis and simulation with some intelligent
systems for application to risk assessment and forecast infinancial market area. The most common
applications of computational finance are within the area of investment banking and financial risk
management, and currently employ learning methods such as Support Vector Machines, Bayesian
approaches, Logistic Regression, Artificial Neural Network, Fuzzy Logic and Genetic Algorithms,
Ant colony and Particle Swarm Optimization. Financial market can be considered as multi-agent
systems.The research was focused on the new approach of financial market risk forecast and
assessment based on Agent Modeling Paradigm. The aim of the paper is to discuss the application of
artificial intelligence methods to computing the financial market risks.
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1. Background

Relevance of problems.Financial Market is a confluence of several disparate fields such as
finance and risk management, information technology, communication technology, computer science,
and marketing science.Any financial institutions such as banks, leasing companies, investment and
pension funds are subject oriented to making successful financial market policy. In this paper we
discuss the application of intelligent methods to financial areas including forecasting, portfolio

optimization, risk management, agent-based market modeling and etc.
Risk management is a critical

H%EEF“K aspect of the investment decision. Some
- Cradit Risk of the main types of risks faced by
,  Assodated with Investments investors are illustrated in Fig.1 below
| - [1]

et L =7 ) CREDIT Market risk refers to the risk faced by an
iy~ ‘/\2 RISK investor arising from changes in financial
Funding Liguidity ___'III Gttt —— market prices. Credit risk is the risk that
A7 hssociated with Counterparties — the counterparty to a deal fails to perform
— their obligations. Liquidity risk is the risk

LIQUIDITY RISK

of negative effects on the financial result
and capital of the bank caused by the bank’s inability to meet all its due obligations.
Fig.1. Risk illustration

2. Financial Market as aMulti-Agent System

During recent years, the use of modern approaches in the financial and economic industries have
increased substantially, providing a new perspective to the agenda of finance and economics. The
study of complex financial systems, form viewpoint of financial risk management, requires methods of
analysis and simulation with some complex systems methodologies for application to risk assessment
and forecastingof trend in the financial market area. Prediction and forecast of financial market risks
is an important issue in finance.

In this section, we will point out that multi-agent models can be seen as an alternative view on
financial markets that supplements the theory of informational efficient markets [2]. Multi-Agent
Systems, also called Swarms of Agents or Societies of Agents, are systems capable of achieving their
goals through the interaction of constituent agents.

Probably the most important design issue of a multi-agent approach is the modeling of the
agents. In the simulation, different agents are used to capture the heterogeneityof restructured markets.

158



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(14), 2013

Agents are self-directed objects with specific traits. Agent-based Approach is a new modeling
paradigm and is one of the most exciting practical developments in modeling since the invention of
Artificial Adaptive Agents models based on Artificial Intelligence methods [3]. Market performance
may depend on the degree of “intelligence” or “rationality” of the agents buying and selling, which has
led to computer experiments in which trading occurs between artificial agents of limited or bounded
rationality, as discussed further below.

The ABMS modeling system provides the ability to the complex relations between Intelligent

Agents, which generally are computer programs that are capable of accomplishing their goals under
conditions of uncertainty through the interaction with other intelligent agents.
The most common applications of computational finance are within the area of investment banking
and financial risk management, and currently employ learning methods such as Support Vector
Machines, Bayesian approaches, Logistic Regression, Artificial Neural Network, Fuzzy Logic and
Genetic Algorithms, Expert Systems and Intelligent agents, Ant colony and Particle Swarm
Optimization. They are often used in combination with each other.

Agent-Based Market Modeling. The essence of Agent-based Modeling (ABM) lies in the
notion of autonomous agents whose behavior evolves endogenously leading to complex, emergent,
system dynamics which are not predictable from the properties of individual agents. In designing
ABMs of financial markets, NC methods can be used to model the information processing and storage
by agents, the process of adaptive learning by agents, or to model the trading mechanism. A key
output from the ABM literature on financial markets is that it illustrates that complex market behavior
can arise from the interaction of quite simple agents. Carefully constructed, ABM can help increase
our understanding of market processes and can potentially provide insights for policy makers and
regulators. Of course, issues of model validation are important in all ABM applications including
those in financial markets.

3. Related Work

It is well established that PSO gets better results in a faster, cheaper way compared with other
methods of global optimizations. In [4], the authors had effectively applied PSO to select active
portfolios under a constraint on tracking error volatility. Recently Computational finance has deeply
benefited from Swarm Intelligence. In [5] the authors used an interesting approach for financial
classification by tapping the potential advantages of both ACO and PSO.

The authors in [6] applied PSO in the problem of single variety option pricing and compared
their experimental result with standard classical Black-Scholes model. In recent years, this research
has been extended to complicated economy and finance systems. It is well known that economy and
financial systems are very complicated nonlinear systems containing several complex factors. It is the
developmental direction of economics to utilize the nonlinear dynamics, especially the bifurcation and
chaos theory to study the internal complexity of economy and finance systems.

Multi-purpose parameter estimation methods play an increasingly important role in financial as
well as insurance mathematics. There are some alternative estimation methods, especially martingale
estimating functions proposed in[7], leading to consistent and asymptotically normal estimators.

The control of nonlinear chaotic system and the estimation of parameters is a daunting task till
date. Studies on parameter estimation for chaotic systems have been investigated recently [8,9]. The
authors in [10] developed an efficient strategies based on dynamic multiswarm particle swarm
optimizer having swarms of small size and proved the effectiveness by applying it on a set of shifted
rotated benchmark function. Recently, the authors in [11], presented a novel Drift Particle Swarm
Optimization algorithm, and applied it in estimating the unknown parameters of chaotic system. Then
another modified version of PSO was demonstrated by the authors [12], in the form of a parallel
multi-swarm optimization algorithm with the aim of enhancing the search ability of the generic single-
swarm PSO for global optimization of very large-scale multimodal functions.
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4. Proposed approach

Based on the PSO paradigm, each of particles represents a potential solution to an optimization
problem, navigate through the search space. The goal of algorithm is to converge to the global (over
the search space ) or local (into the particular cluster) optimum of a target function [13].

Algorithm flow diagram. Assuming that the set of particles with their parameters are given
initial part of algorithm proceeds as follow steps [14]:

I. Initialize:

Particle Description.Each particle has three features:

pL— Position (this is the i-th particle at time or step &, notice vector notation) with the
coordinates:

pL=lxt L], i=1,2, ..N.

The particles are assumed to move within the search space iteratively. This is possible by
adjusting their position using a proper position shift, called velocity(similar to search direction, used to
update the position) and denoted as: vy,

f(pL) — Fitness or objective (determines which particle has the best value in the swarm and also
determines the best position of each particle over time.
The swarm is defined as a set:

Pi={pi }, i=1,2, ..N.
(a) Set parameters N, Cis Cys Xmin > Xmax> Ymin> Ymin» G: u.
where: ¢,, ¢, are weighting factors, called the cognitive and social parameter, respectively.
(b) Set k0.

Initial Swarm.

(¢) Generate N particles (in 2-D space) with random locations (positions with their
coordinates) and “velocities” (the steps) for each particle.

P6= Pmin + 7and(Pmax — Pmin)- (1)

where:ppin and  Pmay are vectors of lower and upper limit values respectively.

Evaluate the fitness of each particle and store:
« particle best ever position (particle memory b’ here is same as p}).
* Best position in current swarm (influence of swarm )

Initial velocity is randomly generated.

i _Pmintrand(Pmax—Pmin)
Vo= A .(2)

II. Clustering:

(a) Fitness functionf (pL ) evaluation for each particle in given coordinates.
(b) Election the leader (or leaders) as best position and the outsiders in the cluster (or
clusters).Given a set of leaders with their positions I,= {p },r=1,2, ..M.

(c)Clustering of swarm (part of outsider particles around of each leader) by K-Means
algorithm.

K-means clustering aims to partition the N outsiders into M sets:L = {[,.}, =1,2, ...M, so as to
minimize the within-cluster sumsquare:

M
. 02
argmin = > > lvk—ril

le=1 pfc €L
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1. Updating:

(a) Velocity Update:
— Provides search directions.
— Includes deterministic and probabilistic parameters.
— Combines effect of current motion, particle own memory, and swarm influence.
(Pk-pi) ®f-ph)
d o —£—=(3)

Viyr = WU + ¢ ran "

+ c¢,rand
where:

w — inertia factor;

pt — local best position;

p‘z — global best position;

wv — current motion;

(pk — pi)

At
(PR—Pk)
At

- particle memory influence;

swarm influence.

(b) Position Update:
Position of each particle is updated by own velocity vector.
Pk+1 = Pk + Vis1 AL(4)
Constraints: If a particle is infeasible, last search direction (velocity) was notfeasible. Set
current velocity to zero.

. i g__i

vk, = ¢, rand ®icpi) c,rand Py Pk) p")(S)
At At

© Memory Update:

At each iteration, after the update and evaluation of particles, best positions are also updated.
Thus, the new best position p‘,g +10f leader [}, ., at iteration k+1 is defined as follows:

1 = Pider =X Vi | =1,2, ...M.(6)
o _[Pin if f(Pk+1) < F(PY),
Pk+17) g )
Py Otherwise

(d) Set kek-+1.

IV. Stopping Criteria

Particles convergence (and entropy, respectively) metrics, as one of the criteria, can be defined
by measuring the location or dispersion around the leader and is more convenient to use in some cases.
(a) Calculate the movement of the best position of leader:
Orerr = [F(P41) = FOIO] < n(®)
where:
u - specified tolerance.
(b) Calculate the degree (or measurement) of convergence of particles into the cluster:

1 . P2
D=3 [Ipk-pil <G
where:
P41 - position of convergence central point

1 P 2, .
Pi+1 = 52?=1\’|pi+1 - p;c+1| , 1#j.(10)
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(c) Calculate the current value of function:
S=0ky1 +D > min. (11)

(d) Stopping criteria satisfied?
If “Yes”, goto IV (e).
If “No”, goto III (a).

(e) Output results.

The above logic is illustrated as a flow diagram without detailing the working of the dynamic
reduction parameters. Problem independent stopping conditions based on convergence tests are
difficult to define for global optimizers. Consequently, we use a conditionally fixed number of fitness
evaluations or swarm iterations as a stopping criteria.

5. Conclusion

This work is motivated by the idea to computing the financial market risks, whichcan be
realized by continuously collecting particles from a financial market data warehouse. Relevance of
problems is particularly pointed by the assessment and forecasting of fitness function, which consists
of anuncertaintyand dynamism of financial processes. We have discussed different kind of metrics to
particle swarm behavior. We defined some number of metrics such as convergenceof particles or
entropy, which will help us in evaluation of performance of theswarming behavior.
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MHNPOIHO3UPOBAHUE ®UHAHCOBOI'O PBIHKA C IPUMEHEHUEM
HNCKYCCTBEHHOI'O UHTEJIVIEKTA
Menapumswm b., Kopormumsumn L1,
I'py3unckuit TexHuueckuii Y HUBEPCUTET

Pe3ome

UccnenoBanne clHOKHBIX (DUHAHCOBBIX CHCTEM TpeOyeT NpUMEHEHHs] METO/OB aHalu3a H
MOJIETIUPOBaHUS IS OIICHKH CTENEeHW pHCKa M ympaBieHHs B chepe (QUHAHCOBOTO pPBIHKA.
VYnpasienue GUHAHCOBHIMH PUCKAMH BKJIIOUAET ACHCTBHS CHCTEM MOJJICPKKH MPUHSITHS pEellICHUH,
BOMPOCOB aHAJIMTHYECKOH OOpaOOTKH, CTAaTHCTHYECKOro aHaiu3a, NpPOrHo3a, M cOopa JaHHBIX.
Haubonee pacnpocrpaneHHble TpUMEHEHUS! (PMHAHCOBBIX BBIYMCIUTENBHBIX MPOIECCOB B 00JacTH
(DMHAHCOBOW JAEATENHHOCTH, W (PMHAHCOBBIH PHCK-MEHEIKMEHT MOXKHO PaccMOTpPEeTh Ha OCHOBE
MYJIBTHAT€HTHOTO MojenupoBaHus. Llenplo maHHOW cTaThu sBisieTcss 0030p CYIIECTBYIOLIMX
COBPEMEHHBIX METO/IOB HMCKYCCTBEHHOI'0 HWHTEJIEKTa /s aHanm3a W mnoadopa 3PQeKTUBHBIX
MOJIXOJIOB I10 YIIPaBJICHHIO (PUHAHCOBBHIMH PHCKAMH PBIHKA.
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