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Summary

Navigation of an airplane is generally difficult aerodynamic problem. Achievement of object,
effective and safety flight is unavailable without high-technology automatic control systems. In the
thesis free rotation in flying of airplane around three axes is learnt, problem of control system
synthesis of airplane pitch is arisen, which is solved by software Matlab by usage of modern
synergetic methods, namely, catastrophe theory.
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1. Introduction

Main issue of control system projection and study is in guarantee of its stability. Lots of
scientific work is dedicated to research of control system stability of airplane by classic methods and
new technologies, when system parameters are unchangeable and well-known in advance. More
difficult problem regarding to creation of robust control system is actual, or control when there is
uncertainty of parameter.

There are many methods for projection of robust control system. Almost in all of them
boundaries of parameters are calculated in which system will functions with desirable features, firstly
it will be stable. Presently there are lots of research in which reduction of influence over stability of
indefinite changes in small boundaries of parameters have been successfully achieved. But the
methods guaranteeing stability of projected control system are rare in case of quite big boundaries of
indefinitely changeable parameters.

In the process of study of this problem, we have searched an approach which we have
considered as an original and we have been interested in it. Approach has been proposed by Victor
Ten and it refers to projection of robust control system [1]. The method is based on results of
catastrophe theory, usage of structurally stable functions, which gives an opportunity to make
projected nonlinear system stable in quite big boundaries of variable parameters of dynamic objects in
the favor of bifurcation of balance points.

It is known that catastrophe theory uses several functions characterized with stable structure.
For today there is much kind of such structures including seven nonlinearities given by Rene Thom
which are named “Thom's 7 elementary catastrophes”. They are: fold, cusp, swallowtail, butterfly,
hyperbolic umbilic, elliptic umbilic, parabolic umbilic [2].

2. Research of second-round system with catastrophe theory

Let's consider general second-round system in which we choose such meanings of parameters
as it will be unstable.
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Fig.1. General second-round system
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Select feedback control law in a form of elliptic umbilic [1]:

u=-x; +3x,x —k](xl2 +x22)+ kyx, + kyx, (1)
System offered by controller may be represented in such a way:
dx, 1
- - = _XZ
e @
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System has the following balance points:
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And appropriate stability conditions:
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(3) and (4) points are alternatives.

Let us assume that 7, parameter may be changed but will be remained positively. If both £,
2

k
and k; is negative and |k2| < 3k—32, then meaning of 7, parameter is unessential. It can obtain any
1

meaning, both positive and negative. In the moment of changing balance point (3) becomes unstable
(disappeared). The same is the condition when balance point (3) is stable, but (4) becomes unstable
(disappeared).

Results of modeling in Matlab computer system are presented accordingly on image 2. We can

k
see that phase paths strive for (0,0) and (k_3 ,Oj balance points.

1

On image 2 phase portrait is constructed for the following meanings of parameters:
k,=1; k, ==5; k; =-2; T, =100 and for variable parameters 7, =var (from -4500 to 4500

pitch 1000) with initial condition x =(—1,0).
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Fig.2. Phase portrait is built k, =1; k, =-5; k; =-2; 7T, =100

We have built dynamic characteristics for visualization of current processes. They are shown on
Figure 3:
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Fig.3. Dynamic characteristics of system Fig.4. Phase portrait built at the time of inclusion
of hyperbolic umbilic

We can easily see existence of two balance points on the picture.

We have used other function of controller from the list of Thom's elementary catastrophes.
Namely, hyperbolic umbilic: u = x] + x; +k,x,x, —k,x, + k,x,.

We have selected coefficients, made modeling and obtained the following image (Fig.4).

From this result we can also see existence of two balance points.

We have draw up a model Simulink and carried out modeling. At the time of one of the
experiments, catastrophe has been fixed on oscilloscope (Figure 5).

Based on above described method, we have considered a real example: problem of pitch

control.
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Fig.5. Modeling scheme in Simulink system
3. Research of pitch dynamic with catastrophe theory

Motion of aircraft is united process, although these difficult motions are divided into simple
types (pitch, list, motion of center of mass, vertical motion and etc.). In frequent cases it is sufficient to
confine to longitudinal and diametrical motions.

Let us consider dynamic of pitch. Generally it has a quite difficult structure and is described
with systems of nonlinear differential equation of higher order, but we can pick up dynamic
subsystem, variables and parameters of which characterize angles and their connections by
dependence with flight control.

7', Weight

Fig.6. Airplane motion angles

Dynamic of isolated angular motion of airplane is described with the following differential
equations:

X = Ax+ Bu
y=Cx

Where matrix A, B and C have the following (nominal) meanings:
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a, 0 -a
A=|a -a” -a’ |,B=|a}|,C=(0 0 1), 7
0 1 0 0

With nominal parameters:
al =21y, al =294, al =218 ay =607y u=5,(r).

If we get incoming signal and learn (7) system dynamic stability, then we will see that it is
situated on an edge of stability and is unused for practice. Let us select control law with the following

form:
1
u =—b—(k] (x32 +x§)— k,x, —k3x2) . ®)
2
Therefore, (7) system in addition to (8) will receive the appearance:
dxl a a
E = ayxl ayx3
ax; =a, x,—arx,—a, x;—k (x32 +x§)+ kyx; +kyx,
dt : : : ) (€))
dx,
_ = xz
dt
y=X

New nonlinear control system (9) has two balance points:
x,=0;x, =0; x; =05 (10)
ks
—,x,=0 11
K 1n

X, =Xy =
(10) Stability provision of balance point is:

a, —ky—aj >0,
(a2 —ky —a® o= (b, — a2 )k, +ag )~kya? >0, (12)
kyaj > 0.

(11) Stability provision of balance point is:

ar +k,—al >0,
. a a . a a
(amz +hk,—a; Xay (k3 -a, )+ k,+a, )+ kya; >0,
a
—kyay >0.

As we see, last inequalities of both provisions are confrontational. If parameter satisfies one of
these provisions, then the system strives to appropriate balance point. If some time later parameter gets
satisfactory meaning of second provision, then current balance point becomes unstable and it is
disappeared. Then the other stable balance point is created. Therefore, for (9) system stability it is not
important which meaning will be received by parameter, except zero, in any case (9) system will be

stable.
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MOJIEJIMPOBAHHWE CHYCTEMEI YIIPABJIEHWA PEXXMMOB IIOJIETA
CAMOJIETA
Muegymumeniu H., Mocamsunu 1., Kupuruaze /1.
I'py3unckuit TexHudeckuil YHUBEPCUTET

Pesome

VYupaBieHue caMoJeTOM B OOlLieM IIpefcTaBiafeT COOOM CIOXHYIO aspOJUHAMUYECKYIO
samavyy. [JlocTmkenue 1enu, 5GGeKTUBHBINI U 0e30IaCHBINI IOJET HeBO3MOXeH 0Oe3
BBICOKOTEXHOJIOTUIECKHNX aBTOMATHYECKHNX CHCTEM YIIpABJIE€HUA. B pa60Te H3Yy49€HBbI CBO60,ILHBIE
IIOBOPOTHI BOKPYT TpeX Ocell IpK IIOjeTe CaMOJIeTa, IIOCTaBlIeHa 3aJada CHUHTe3a CHCTEMBI
yIOpaBlIeHUs II0 TaHTaXy, KOTOpas pelleHa C HUCIOIB30BAHMEM IIPOTPAMMHOIO OOecIedeHUsI

Matlab u COBpPEMEHHBIX METOAOB CMHEPI€THUKH, B 9aCTHOCTH, TEOPUU KaTaCTpOCl).
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