Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(8), 2010

EFFECTIVE BLOCKING OF THE SKYPE PROTOCOL WITH CISCO 10S
NATIVE FEATURES

Kartvelishvili Mikheil, Davitashvili Nicolas
Green Networks Ltd., Thbilisi, Georgia,
O. Kartvelishvili - GTU, Georgia

Abstract

The given work illustrates an effective method of blocking Skype protocol using a
single Cisco I0S based router tested on different client platforms. This task becomes more
and more relevant as popularity of Skype application increases throughout Internet and
control of these types of applications in network with minimal hardware/software tools
becomes a real issue.

Keywords: Skype. Protocol. Block. FPM, CBAC, IOS, Filtering.

1. INTRODUCTION

Skype has appeared in the Internet in mid-2003 and has rapidly gained popularity as a low-
cost telephony and messaging application. It became widely deployed in SOHO, enterprise
environments, and educational institutions.

As a result of growth of its popularity, a requirement to limit and control this protocol has
unfolded in different network environments. This task appeared to be quite complex, due to
Skype’s proprietary nature and its use of advanced techniques for obfuscation and firewall
traversal. Consequently Skype protocol analysis and blocking methodology has become the
topic of huge number of discussions and publications in Internet throughout recent several
years. [1I121(3][41[5]

The present work is an attempt to formulate a new, effective method of blocking current
and former Skype protocol versions on different client platforms, based solely on native
Cisco I0S features without any other additional intermediate network nodes.

2. TEST NETWORK TOPOLOGY

The testbed network topology is quite simple as shown in the Figure 1. It consists of a
single Cisco 1841 router performing standard NAPT functionality with outside interface
(FastEthernet0/1) connected to the Internet and inside interface (FastEthernet0/0) connected
to LAN with a single client running the Skype application. The testing was performed on the
following OSs:

e MS Windows XP SP3
.. Ubuntu Linux 9.04
FastEthernet0/1 FastEthernet0/0 [) Mac OS Leopard 1058
P lrasesast boofL oo The following Skype versions were
tested:
¢ Skype for Windows v4.1
e Skype for Windows v3.8
e Skype for Windows v2.6
Figure 1. Testbed network topology e Skype for Linux v2.0.0.72
e Skype for MacOS v2.8

L s

(INTERNET

Router PC

10.0.0.2

The minimum IOS version supporting all features mentioned in this document is 12.4(4)T.

121

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(8), 2010

3. SKYPE PROTOCOL BEHAVIOR AND PATTERN ANALYSIS

Blocking the Skype protocol can be broken up in 3 phases.

1. Blocking the major bulk of high numbered ports
2. Filtering HTTPS protocol
3. Filtering HTTP protocol

With no filters implemented in the path, Skype is using random TCP/UDP ports
above 1024 to communicate.

After blocking all TCP ports except 443 (HTTPS) and 80 (HTTP), Skype negotiates
using SSL over port 443 and that is when we are able to filter it using deep packet inspection.

It was observed, that, during SSL negotiation all versions of Skype on all operating
systems we have tested are using the same Session ID (1C A0 E4 F6 4C....) in Server Hello
packets, which we use to differentiate Skype SSL sessions from other HTTPS traffic.

In case of Windows OS the Session ID field is located in TCP segment’s payload with
an offset of 44 bytes. But the tricky part is that this is not always the case with other OS’s.
The sample Server Hello packet captured on the client node is shown in Figure 2.
=-TCP

Source port: 443
Destination port: 14253
Sequence: 026348F60 (B40978754)
Acknowledgernent: 01312 1AE IF (324290847)
Header length: 0305 (5) - 20 bytes

[+ Flags: PSH ACK
Window: 0FFFO (RE520)
Chedksurn: 0xAS52 (43090 - comect
Ungent Pointer: 00000 ()
TCP Options: Mone

SR

Content type: 0u16 (22) - handshake
Major wersion: 0:03 (3)
Minor wersion: 001 (1)
Length: 0u044 (74)
Handshake vype: 0002 (2) - server_hello
Length: Oud00046 (70)
Major server version: 003 (3)
Minor server version: 0301 (1)
Current dateftime (GMT): Sat Jan 31 21:23:18 20040
Random data

[SessionID: 1C AD E4F6 4C €3 51 AE 2F 8E 4E E1 EE 76 6A 0A 88 D5 D2 CS 5C AE 98 C5 E4 81 F2 2A 69 BF 90 58
CipherSuite: 010005 (5) - SS5L_RSA_WITH_RC4_128_SHA
Compressioniethod: 000 () - MULL

Figure 2. SessionID that can be used to capture and drop the Server Hello.
This packet is captured on Windows machine, thus TCP Options field is empty, which may
not be the case for UNIX/Darwin-based systems.

In Linux and MacOS things get complicated as Skype may or may not inject some variable
length options in TCP header (12 bytes in case of Linux). This makes it a bit harder to find
Session ID inside the payload. This does not happen in Windows due to recent API
limitations concerning raw socket creation, which are not an issue for Linux and MacOS
systems. The Options field insertion into TCP header is illustrated in Figure 3.

122

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(8), 2010

- Transmission Control Protocol, Src Port: 48816 (48016), Dst Port: https (443), Seq: 73, Ack: 88, Len: @
Source port: 48016 (48816)
Destination port: https (443)
Sequence number: 73 (relative sequence number)
Acknowledgement number: 8@ (relative ack number)
Header length: 32 bytes
P Flags: 6x18 (ACK)
Window size: 5888 [scaled)
b Checksum: 8x1d9l [correct]
= Options: (12 bytes)
NOP
HOP
Timestamps: TSval 98134, TSecr 17346784
b [SEQ/ACK analysis]

Figure 3. TCP Option field in non-Windows originated Server Hello message
This packet is captured on Linux machine, thus TCP Options field is present and is 12
bytes long

After blocking SSL Server Hellos with the mentioned Session ID in the incoming path,
Skype tries to exchange data (probably keys for encryption) over HTTP (tcp/80), but it is not using
standards based HTTP protocol syntax, so it can be filtered using strict HTTP inspection and
dropping all non-conforming datagrams.

4. CONFIGURING CI1SCO I0S FOR SKYPE BLOCKING

Based on the previous discussion we decided to use Cisco Flexible Packet Matching (FPM)
feature to detect and drop Session ID patterns in SSL packets and Application Firewall feature in
CBAC for preventing consequent Skype data tunneling over HTTP.

First of all we blocked all the high port traffic allowing a range of well-known ports (1-
1023) through the router.

ip access-list extended block
permit udp any any range 1 1023

permit tcp any any range 1 1023
permit icmp any any

!interface FastEthernet0/0

ip access—-group block in

This step has forced Skype to try to use its HTTP/HTTPS protocol tunneling feature and
made it vulnerable to detection.

We continued with configuring FPM feature. The first step is to load PHDF files for IP and
TCP protocols into the router. These files (ip.phdf and tcp.phdf in this case) can be obtained from

memory (usually by means of TFTP protocol) and made available to IOS using commands:

! Valid CCO account is required.
123

http://www.cisco.com/cgi-bin/tablebuild.pl/fpm

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(8), 2010

load protocol flash:ip.phdf
load protocol flash:tcp.phdf

Definitions were created based on the analysis performed in the previous section.

class-map type stack match-all ip tcp

match field IP protocol eq 6 next TCP

class-map type access-control match-any skype
match start TCP payload-start offset 44 size
match start TCP payload-start offset 48 size
match start TCP payload-start offset 52 size
match start TCP payload-start offset 56 size

match start TCP payload-start offset 60 size
|

eq O0x1CAQOE4F6
eq O0x1CAQOE4F6
eq O0x1CAQOE4F6
eq O0x1CAQOE4F6
eq O0x1CAQOE4F6

DO D DD

|
policy-map type access-control skype-policy
class skype
drop
policy-map type access-control fpm-policy
class ip tcp
service-policy skype-policy

As Cisco I0S FPM feature does not support variable length fields such as TCP Options and assumes
TCP header to be strictly 20 bytes long, we are trying to catch the Session ID signature sequentially on
several offsets with 4 byte steps. 4-byte steps are derived from the fact that actual TCP header is always
aligned to 32-bit boundary and as its fixed part is 20 bytes long, the TCP options should also conform to this
alignment. This makes the range of possible offsets quite limited. We decided to include first 5 possible
offsets into the sample configuration (this assumption appeared to be sufficient for all the tested platforms
and software versions).

interface FastEthernet0/0
service-policy type access-control input
fpm-policy

This newly created policy-map was applied to the outside interface in ingress direction,
since Server Hello messages are always inbound to the client.

The next task is to prevent Skype from exchanging data over tcp/80 port. This is achieved
using CBAC Application Firewall feature, which can easily identify traffic flow not matching
HTTP specification and terminate it.

ip inspect name NO SKYPE appfw WEB

ip inspect name NO SKYPE http
|

appfw policy-name WEB
application http
strict-http action reset alarm

This configuration was applied to the ingress traffic on the inside interface.
interface FastEthernet0/0

124

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(8), 2010

ip inspect NO SKYPE in
Although this configuration prevents Skype client from logging in to the server, it does not break
any existing Skype sessions.

5. CONCLUSION

The present work showed that blocking Skype protocol is not as difficult as it may seem
without appropriate analysis. Although Cisco IOS was used to block Skype in this illustration, this
method is also applicable to any type of firewall supporting payload pattern matching and HTTP
traffic inspection features. Even though the presented test was successful, upcoming Skype versions
may change the protocol behavior and patterns significantly, making the method described here
completely or partially ineffective. In addition several other patterns were identified during SSL
exchange, but we decided not to use them due to higher probability of false positives.

REFERENCES:

1. G Salman A. Baset and Henning Schulzrinne, “An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol”, Sept. 2004.

2. Dario Bonfiglio et al. “Revealing Skype Traffic: When Randomness Plays with You,” ACM
SIGCOMM Computer Communication Review, Volume 37:4 (SIGCOMM 2007), p. 37-48

3. P. Biondi and F. Desclaux, "Silver Needle in the Skype", BlackHat Europe, Mar. 2006

4. Fabrice Desclaux, Kostya Kortchinsky. "Vanilla Skype part 1". RECON2006, Jun. 2006.

5. Fabrice Desclaux, Kostya Kortchinsky. "Vanilla Skype part 2". RECON2006, Jun. 2006.

6. “Flexible Packet Matching”, Data Sheet, Cisco Systems, Jul. 2007

SKYPE 36(M&M3MKR0L IBIISIB0 3R (M30®Iss> CISCO 10S-0b
FoFI6IB IR0 1SFISRIB00)

dobgoem Jetrozggemodgomo, boimmmb sgomsdzamo (Green Networks Ltd.,mdo¢obo)
@036 Jsemggmadgomo — bsdsdmggmmlb Bgdbogmdo mbogg@bod)gdo
69b0mdy

dm3gdmer Bsdmmddo boBggbgdos Skype 3MMGHMIM@OL dr™m306M900L 9B9JGHE0
dgonmeo Cisco I0OS m39Msgome LolEgdsBg 05H0MYPMWo FoMmIMME0DIGHMOOL 45dmYygbgdom

5 2obbmM309gdos dobo GHYbBHoMmgds Lb3oolbgs 3e0gbEGHWe 3wsGBMOIODY.

3OOPEKTUBHOE BJIOKUPOBAHUE ITPOTOKOJIA SKYPE CPEICTBAMU
BCTPOEHHOM CISCO IOS

Kapreenumsumu M., lapuramsunu H. - Green Networks Ltd. Toumicu
Kapreenmumsumu O. - I'py3unckuil TexHnueckuil Y HUBEpCUTET
Pesrome

B npencraBnennoit pabote nokaszan 3¢(eKTUBHBINA MeTO1 OJOKHpOBaHUS IpoToKosia Skype
C WCIIOJIb30BAaHMEM MapIIpyTH3aTopa, 0a3upoBaHHOM Ha omeparmonHoit cucreme Cisco I0S, wu
BBITIOJTHEHO €r0 TECTUPOBAHNE Ha Pa3IMYHBIX KIMEHTCKUX IU1aTdopMax.

125

