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Abstract 

We considered small and large sample cases, or n < 30 or n ≥  30, where samples are 
presented as sequences of random numbers or vectors. Each vector of random components is 
transformed into one number – the mean of random components. Then the sampling distribution is 
constructed for the classes of sequences using these means of vector components with a corresponding 
confidence interval. If confidence intervals of classes are overlapped, or classes are not separable, that 
practically does not happen in most cases, it is the subject of other consideration. Such confidence 
spaces are constructed for two or more classes using the training sequences. Then the distance between 
each pairs of sampling distribution means or centers are determined that defines a real confidence 
level or recognition accuracy.  Afterwards, any new unknown coming sequence or vector is classified 
depending on to which class subspace it falls in, that in general case presents a hyper-ellipsoid.     

Key words: sampling distribution, random series, confidence interval. 

1. Introduction 

Random sequence recognition (classification) is one of the actual problems in a wide range of 

technical, medical, economic, military and many other fields. The present approach uses a property of 

sampling distribution of random numbers as the confidence interval. This concept makes it possible to 

construct a series of sampling distribution means as 
ω

µηη ,...,, 21  that are for ω – number of classes 

somehow distant from each other measured by a desirable confidence interval. In other words, using 

available data or sequences of known belonging to the appropriate classes we perform several steps of 

averaging and transformations to find a reasonable classification rule to ease classification of new 

unknown sequences with a high confidence that would depend on means of those sequences. This idea 

comes from properties of live neural networks where independently on a type of input signals 

information undergoes several steps of averaging of previous averaging with a next simple 

transformations [1]. As we will see later this approach creates substantial benefits due to its simplicity 

and quality of classification. 

2. Decision of  the problem 

We use training random sequences of equal number of elements with a known assignment to 

one of the ω classes. If sequences have a different length we can add zeros for simplicity. Suppose we 

have m training n-dimensional vectors distributed along ω classes. Analogously, the input pulses 

coming to the synapses of neural cell or neuron are accumulated or simply averaged, or in other 

words, at each neuron takes place so called a spatial and temporal summing up of signals. Therefore, 

at the next stage of neurons those averaged signals are passing similar averaging or squeezing 

dimension of input signals. Here we omit discussion about such a non-linear transform as the threshold 

[2] that actually is the main averaging cutter. As we see living organisms are mostly making very 

complex behavioral decisions reflected by a simple answer – either “yes” or “no” or by a categorical 

assessment of an external influence.  
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Following the abovementioned averaging is very important substantial operation that was 

discovered as the Central Limit Theorem [1] allowing forecasting 

 population mean with a certain percentage of confidence for normally or non-normally 

distributed data using the distribution of sample means or sampling distribution. We consider two 

cases – for the large samples sized more than 30 and small samples sized less than 30, or in both cases 

we use training sequences size or length of which is n > 30 and n < 30. For the first sequence we apply 

z – distribution and for the second ones – t – distribution. In addition, in a one-dimensional case we 

have single sequence of numbers while in general case a process can be multidimensional or k = 

1,2,…,m sequences coming simultaneously or in parallel.  

The simplest case implies dichotomy of one-dimensional number sequences having varying 

means that equal average means for each of sequences or sum of sequence numbers divided by 

sequence length or sample size – n. Let denote this mean as iµ  where i = 1,2 or we have n numbers in 

each training sequence belonging to class 1 or class 2. The training process consists of determining a 

set of sample means for either class 1 or class 2. In the case of two classes we are constructing 

sampling distribution for distinguishable class means in a sense of providing a certain distance 

between them satisfying a possible highest percentage of confidence. Discrimination into two classes 

for large samples is illustrated in Fig 1. As we will see later often the overlapping data along the 

number axes presented as a sampling distribution (averaged or mean values along the number axes) 

becomes separated in a sense of having distant means at the distance of more or equal to the sum of 

marginal errors for both sampling distributions. This relationship is given in expression (1). 

 

       
 

                            22/12/21 SzSz ×+×≥− ααηη                             (1) 
 

Where 1η  and 2η  are the sampling distribution means (more precisely x1η  and x2η ) 

correspondingly to two class sequences. Note that in this case sample sizes or sequence lengths are 

equal and is n. +∆ is a reserve or additional distance for confidence interval. 

Fig. 1 – Sampling Distributions for Two Classes 
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       Fig. 2 is an illustration of two-dimensional processes or m=2, belonging to ω = 1, 2 or 3 

classes, having different standard deviations. 

 

 
 

According to the Fig.2 for large samples the expression (1) is satisfied for all three classes 

because in many class cases for separation between all classes we must have the following  

expression: 

nSSznSznSzd jijijiji /)(//),( 2/2/2/ +×=×+×≥=− αααηηηη      (2) 

where: i,j = 1, 2, … , ω, i ≠ j, ji ηη ,  are the sampling distribution means, n is the sample size, ji SS ,  

are the standard deviations of i-th and j-th classes and 2/αz  is z- value for a desirable confidence level 

α , that is divided by two because of  a one-sided confidence. 

Therefore, if we have m>2-dimensional training processes having equal lengths of n, or m-

parallel series of sequences: { } { } { }i
mn

i
n

i
n

i
m

iii
m

ii xxxxxxxxx ,...,,,...,,...,,,,...,, 212221212111 , where i=1,2,…,ω 

is a class index, the length of each training sequence contains ωn numbers. Then for each sample of  i-

th class of size n we would have sampling distribution means { i
m

ii ηηη ,...,, 21 }, where k = 1,2, …, m. 

Let these i
kη -s represent a vector  ),...,,( 21

i
m

iii

k ηηηη - a mean of sampling distribution means, which 

can be different for various classes, or we would have  
i

kη  vector in Euclidean space , where i = 1,2, 

…,ω. In other words, a separation between classes with a given confidence level is similar to the 

expressions (1) and (2) as: 

),( 21 xxP  

),( 211 xxP  
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1x  

2x  
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),( 31 ηηd  

),( 32 ηηd  
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Fig. 2 – Sampling Distribution for Two-Dimensional 
Processes of Three Classes 
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Suppose for some pairs of classes after processing training sequences or determination of all 

class spaces the above mentioned expressions are not satisfied, or the differences between means of 

sampling distributions are less than the sum of appropriate margins of error. Then we are decreasing 

confidence level (or increasing α - value) up to the level for satisfying conditions (1), (2), (3) that 

shows a real probability of recognition for the given pair of classes. If it is impossible to meet those 

conditions, the classes are not divisible according to the proposed approach. Then we use a 

preliminary transformation of data for these classes that we will show hereafter that is successful in 

most cases and as a rule is used to apply in small sample cases. 

Thus let consider m-dimensional space in which for ω classes we have ω hyper-ellipsoids 

centered in 
i

kη  points. Radiuses of hyper-ellipsoids are determined by margins of error defined from 

the desirable confidence level of recognition α. Practically this level in most cases is less than 0.01, or 

probability of correct recognition in these cases reaches almost 100% (according to satisfied 

confidence level α). In other words, after determination ω class sub-spaces (ellipsoids) for any new 

unknown sequence we computing the mean vector 
i

kη  and defining into what class sub-space it falls 

with a corresponding confidence. 

Now let consider a small sample case when n < 30. As it is well known [3] for small samples 

the stem-and-leaf diagrams are used for visual analysis of data character that makes it possible to ease 

a statistical decision making. In this case we can simply look at the diagram of the data available and 

find whether the data is including outliers or it is congested for different classes. In the first case the 

square root transformation is applied while in the second case the log base 10 use is more rational. The 

square roots of numbers between 0 and 1 are larger than the original raw values, and square roots of 

numbers greater than 1 are smaller than original raw values. In other words, data values in each tail are 

drawn toward the mean of transformed data. This transformation results in more symmetrically shaped 



Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS -  No 1(4),  2008 
 

 
36

distribution close to the normal and with variances more equal. On the other hand, the logarithm base 

10 is the exponent or the power to which 10 must be raised to equal to the given number [3].  

Let consider the following example. Table 1 presents 20 sets of sample data on percentage 
sales increase belonging to one of two classes not having outliers. Fig. 3 shows a corresponding stem-
and-leaf diagram for that numbers where the mans of classes are not evidently separated and it is hard 
to see class deviations.  

          Table 1 

 

  
       Table 2 shows square roots appropriate to percentage sales increase data given in Table 1 and Fig. 
4 illustrates corresponding stem-and-leaf diagram for this transformed data. 

Table 2 

 

 

Percentage Sales Increase for Product 1 1.2 1.3 2.1 2.2 2.3 2.3 2.4 2.4 2.6 2.7 
Percentage Sales Increase for Product 2 1.6 2.0 2.8 3.0 3.1 3.2 3.3 3.5 3.7 4.5 

           
Percentage Sales Increase for Product 1 2.8 3.1 3.2 3.4 3.7 4.1 4.7 5.1 6.1 6.3 
Percentage Sales Increase for Product 2 4.8 5.1 5.3 5.7 5.9 6.1 6.8 7.3 8.1 8.5 

Percentage Sales Increase for Product 1 1.10 1.14 1.45 1.48 1.52 1.52 1.55 1.55 1.61 1.64 
Percentage Sales Increase for Product 2 1.26 1.41 1.67 1.73 1.76 1.79 1.81 1.87 1.92 2.12 

Percentage Sales Increase for Product 1 1.67 1.76 1.79 1.84 1.92 2.02 2.17 2.26 2.47 2.51 
Percentage Sales Increase for Product 2 2.19 2.26 2.30 2.39 2.43 2.47 2.61 2.70 2.85 2.92 

Fig. 3 – Stem-and-Leaf Diagram for Percentage Sales 
Increase of Two Products 
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Fig. 4 – Stem-and-Leaf Diagram for Transformed 
Percentage Sales Increase of Two Products 
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As it is seen in Fig. 4 as a result of taking square roots the transformed number means 

and deviations are more discernable and shapes are near-normal. The shown computed values 

of means and standard deviations radically changed statistics. Relating to initial data after 

squared root transform the standard deviations are substantially smaller that makes it possible 

to squeeze the class confidence interval for two classes or class hyper-ellipsoid spaces of 

confidence for multi-class cases. That improves class separation and recognition quality in a 

large scale.  

Let compute difference between classes and determine actual confidence intervals for 

both classes and the highest probability of recognition: 

nSt /×±η , or 
755.147.4/155.0539.267.1/11 =×+=×+ nStη  
998.147.4/215.0539.212.2/22 =×−=×− nStη  

 
3. Conclusions 

 
As we see even 99% one-sided confidence interval is satisfied and there is an 

additional distance indicating that recognition quality actually is 100%.  Here we are not 

considering such rare cases when the confidence intervals of training sequences are 

overlapping or could not provide a high confidence of recognition. It is a subject of other 

consideration.  
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SemTxveviTi mwkrivebis klasifikacia amokrefiTi  

ganawilebis safuZvelze 

avTandil kvitaSvili 
Savi zRvis saerTaSoriso universiteti, Tbilisi 

reziume   

ganxilulia mcire da didi amokrefebis SemTxvevebi, anu misi zoma n < 30 an n ≥  

30 warmodgenili ricxvTa SemTxveviTi mimdevrobebiT. igulisxmeba, rom TiToeuli 

SemTxveviTi komponentebiani veqtori gardaiqmneba erT ricxvad - am komponentebis 

saSualo mniSvnelobad. amis Semdeg xdeba am saSualo mniSvnelobebis amokrefiTi 
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ganawilebis ageba, romelic gansazRvravs mocemuli klasis mwkrivebisaTvis 

damajereblobis intervals Sesabamisi sizustiT. Tu es manZili ver uzrunvelyofs 

damajereblobis intervalis sasurvel sizustes, rasac iSviaT SemTxvevaSi SeiZleba 

hqondes adgili, igi calke ganxilvis sakiTxia. aseTi areebi aigeba ori an meti 

klasisaTvis maswavli mwkrivebis saSualebiT. amis Semdeg ganisazRvreba klasebis yoveli 

wyvilisaTvis manZili maT centrebs (saSualoebs) Soris, rac gansazRvravs 

damajereblobis intervalTa faqtobriv sizustes. amis Semdeg nebismieri axali ucnobi 

mikuTvnebis veqtoris klasifikacia ganisazRvreba misi mdgenelebis saSualo mniSvnelobis 

moxvedriT Sesabamis damajereblobis intervalSi, anu klasis qve-sivrceSi, romelic 

zogad SemTxvevaSi warmoadgens hiperelipsoids.     

 
КЛАССИФИКАЦИЯ СЛУЧАЙНЫХ РЯДОВ НА ОСНОВЕ  

ВЫБОРОЧНОГО РАСПРЕДЕЛЕНИЯ 

Квиташвили А.А. 
Международный Черноморский Университет, Тбилиси 

Резюме 

Рассмотрены случаи малых и больших выборок  (n < 30 или n ≥  30), представленных в 

виде рядов или последовательностей случайных чисел. Предполагается, что каждая 

последовательность или вектор преобразуется в одно число – среднее значение составляющих. 

Затем происходит построение выборочного распределения этих составляющих, которое 

определяет интервал уверенности для классов последовательностей с соответствующей 

точностью. Если интервалы перекрываются т.е. они не удовлетворяют разделение классов, что 

практически редко имеет место, то это является предметом отдельного обсуждения. Такие 

интервалы или области определяются с помощью обучающих последовательностей (выборок) 

для двух и более классов. После этого определяются расстояния между центрами (средними) 

выборочных распределений для каждой пары классов, что и определяет фактическую точность 

распознавания той или иной последовательности. В результате этого любая новая неизвестная  

последовательность (вектор) будет классифицирована (распознана) соответственно ее 

попаданию в то или иное подпространство класса, что в общем случае представляет собой 

гиперэллипс. 
 
 
 
 
 
 


