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Abstract

We considered small and large sample cases, or » < 30 or » > 30, where samples are
presented as sequences of random numbers or vectors. Each vector of random components is
transformed into one number — the mean of random components. Then the sampling distribution is
constructed for the classes of sequences using these means of vector components with a corresponding
confidence interval. If confidence intervals of classes are overlapped, or classes are not separable, that
practically does not happen in most cases, it is the subject of other consideration. Such confidence
spaces are constructed for two or more classes using the training sequences. Then the distance between
each pairs of sampling distribution means or centers are determined that defines a real confidence
level or recognition accuracy. Afterwards, any new unknown coming sequence or vector is classified
depending on to which class subspace it falls in, that in general case presents a hyper-ellipsoid.
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1. Introduction

Random sequence recognition (classification) is one of the actual problems in a wide range of
technical, medical, economic, military and many other fields. The present approach uses a property of

sampling distribution of random numbers as the confidence interval. This concept makes it possible to

construct a series of sampling distribution means as 1,,7n,,..., 4 that are for @ — number of classes

somehow distant from each other measured by a desirable confidence interval. In other words, using
available data or sequences of known belonging to the appropriate classes we perform several steps of
averaging and transformations to find a reasonable classification rule to ease classification of new
unknown sequences with a high confidence that would depend on means of those sequences. This idea
comes from properties of live neural networks where independently on a type of input signals
information undergoes several steps of averaging of previous averaging with a next simple
transformations [1]. As we will see later this approach creates substantial benefits due to its simplicity

and quality of classification.
2. Decision of the problem

We use training random sequences of equal number of elements with a known assignment to
one of the o classes. If sequences have a different length we can add zeros for simplicity. Suppose we
have m training n-dimensional vectors distributed along w classes. Analogously, the input pulses
coming to the synapses of neural cell or neuron are accumulated or simply averaged, or in other
words, at each neuron takes place so called a spatial and temporal summing up of signals. Therefore,
at the next stage of neurons those averaged signals are passing similar averaging or squeezing
dimension of input signals. Here we omit discussion about such a non-linear transform as the threshold
[2] that actually is the main averaging cutter. As we see living organisms are mostly making very
complex behavioral decisions reflected by a simple answer — either “yes” or “no” or by a categorical

assessment of an external influence.
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Following the abovementioned averaging is very important substantial operation that was
discovered as the Central Limit Theorem [1] allowing forecasting

population mean with a certain percentage of confidence for normally or non-normally
distributed data using the distribution of sample means or sampling distribution. We consider two
cases — for the large samples sized more than 30 and small samples sized less than 30, or in both cases
we use training sequences size or length of which is #n > 30 and n < 30. For the first sequence we apply
z — distribution and for the second ones — ¢ — distribution. In addition, in a one-dimensional case we
have single sequence of numbers while in general case a process can be multidimensional or k =
1,2,...,m sequences coming simultaneously or in parallel.

The simplest case implies dichotomy of one-dimensional number sequences having varying

means that equal average means for each of sequences or sum of sequence numbers divided by

sequence length or sample size — n. Let denote this mean as u, where i = 1,2 or we have n numbers in

each training sequence belonging to class 1 or class 2. The training process consists of determining a
set of sample means for either class 1 or class 2. In the case of two classes we are constructing
sampling distribution for distinguishable class means in a sense of providing a certain distance
between them satisfying a possible highest percentage of confidence. Discrimination into two classes
for large samples is illustrated in Fig 1. As we will see later often the overlapping data along the
number axes presented as a sampling distribution (averaged or mean values along the number axes)
becomes separated in a sense of having distant means at the distance of more or equal to the sum of

marginal errors for both sampling distributions. This relationship is given in expression (1).
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Fig. 1 — Sampling Distributions for Two Classes
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Where 71, and 7, are the sampling distribution means (more precisely 7. and 71,-)

correspondingly to two class sequences. Note that in this case sample sizes or sequence lengths are

equal and is n. +A is a reserve or additional distance for confidence interval.
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Fig. 2 is an illustration of two-dimensional processes or m=2, belonging to w =1, 2 or 3

classes, having different standard deviations.
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Fig. 2 — Sampling Distribution for Two-Dimensional
Processes of Three Classes

According to the Fig.2 for large samples the expression (1) is satisfied for all three classes
because in many class cases for separation between all classes we must have the following

expression:
=0, =d@mm) 2 2, xS NN+ 2, xS INn =2, (S, +8)/\n ()
where: 1,j=1,2, ..., @, 1#], n,,N; are the sampling distribution means, n is the sample size, Sl.,Sj

are the standard deviations of i-th and j-th classes and z_,, is z- value for a desirable confidence level

a , that is divided by two because of a one-sided confidence.

Therefore, if we have m>2-dimensional training processes having equal lengths of n, or m-
parallel series of sequences: {x{l I SRR }, {x{z 3 X3y 5eeesX) },...,{x{n 3 X5 eees Xy }, where i=1,2,...,0
is a class index, the length of each training sequence contains wn numbers. Then for each sample of i-

th class of size n we would have sampling distribution means {nf,n;,...,r[; }, where k = 1,2, ..., m.
Let these 1, -s represent a vector 1, (1/,n5,...,n. ) - a mean of sampling distribution means, which

—i
can be different for various classes, or we would have 1, vector in Euclidean space , where i = 1,2,

...,w. In other words, a separation between classes with a given confidence level is similar to the

expressions (1) and (2) as:
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Suppose for some pairs of classes after processing training sequences or determination of all
class spaces the above mentioned expressions are not satisfied, or the differences between means of
sampling distributions are less than the sum of appropriate margins of error. Then we are decreasing
confidence level (or increasing o - value) up to the level for satisfying conditions (1), (2), (3) that
shows a real probability of recognition for the given pair of classes. If it is impossible to meet those
conditions, the classes are not divisible according to the proposed approach. Then we use a
preliminary transformation of data for these classes that we will show hereafter that is successful in
most cases and as a rule is used to apply in small sample cases.

Thus let consider m-dimensional space in which for w classes we have w hyper-ellipsoids

centered in 17, points. Radiuses of hyper-ellipsoids are determined by margins of error defined from

the desirable confidence level of recognition a. Practically this level in most cases is less than 0.01, or
probability of correct recognition in these cases reaches almost 100% (according to satisfied

confidence level a). In other words, after determination @ class sub-spaces (ellipsoids) for any new

—1i
unknown sequence we computing the mean vector 77, and defining into what class sub-space it falls

with a corresponding confidence.

Now let consider a small sample case when n < 30. As it is well known [3] for small samples
the stem-and-leaf diagrams are used for visual analysis of data character that makes it possible to ease
a statistical decision making. In this case we can simply look at the diagram of the data available and
find whether the data is including outliers or it is congested for different classes. In the first case the
square root transformation is applied while in the second case the log base 10 use is more rational. The
square roots of numbers between 0 and 1 are larger than the original raw values, and square roots of
numbers greater than 1 are smaller than original raw values. In other words, data values in each tail are

drawn toward the mean of transformed data. This transformation results in more symmetrically shaped
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distribution close to the normal and with variances more equal. On the other hand, the logarithm base

10 is the exponent or the power to which 10 must be raised to equal to the given number [3].

Let consider the following example. Table 1 presents 20 sets of sample data on percentage
sales increase belonging to one of two classes not having outliers. Fig. 3 shows a corresponding stem-
and-leaf diagram for that numbers where the mans of classes are not evidently separated and it is hard
to see class deviations.

Table 1
Percentage Sales Increase for Product1 | 1.2 | 1.3 | 2.1 | 2.2 | 2323 |24 |24]2.6)|27
Percentage Sales Increase for Product2 | 1.6 | 2.0 | 2.8 | 3.0 | 3.1 3.2 /133 |35|3.7]| 4S5
Percentage Sales Increase for Product1 | 2.8 | 3.1 | 3.2 |34 3.7[41 |47 |51]6.1]6.3
Percentage Sales Increase for Product2 | 48 | 5.1 |53 |57 /59[6.1 68| 73]|8.1]8.S5
8
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Fig. 3 — Stem-and-Leaf Diagram for Percentage Sales
Increase of Two Products

Table 2 shows square roots appropriate to percentage sales increase data given in Table 1 and Fig.
4 illustrates corresponding stem-and-leaf diagram for this transformed data.

Table 2
Percentage Sales Increase for Product1 | 1.10 | 1.14 | 1.45 | 1.48 | 1.52 | 1.52 | 1.55 | 1.55 | 1.61 | 1.64
Percentage Sales Increase for Product 2 | 1.26 | 1.41 | 1.67 | 1.73 | 1.76 | 1.79 | 1.81 | 1.87 | 1.92 | 2.12
Percentage Sales Increase for Product 1 | 1.67 | 1.76 | 1.79 | 1.84 | 1.92 | 2.02 | 2.17 | 2.26 | 2.47 | 2.51
Percentage Sales Increase for Product 2 | 2.19 | 2.26 | 2.30 | 2.39 | 2.43 | 2.47 | 2.61 | 2.70 | 2.85 | 2.92
n, =1.61,8, =0.155 n, =2.12,8, =0.215
92
84
79
76 92 47
67 87 43
64 81 39
48 61 47 79 30 92
45 55 26 76 26 85
14 52 17 41 73 19 70
10 52 02 51 26 67 12 61
| | | | > | | | | >
| | | | g | | | | g
1 1 2 2 1 1 2 2

Fig. 4 — Stem-and-Leaf Diagram for Transformed

Percentage Sales Increase of Two Products
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As it is seen in Fig. 4 as a result of taking square roots the transformed number means
and deviations are more discernable and shapes are near-normal. The shown computed values
of means and standard deviations radically changed statistics. Relating to initial data after
squared root transform the standard deviations are substantially smaller that makes it possible
to squeeze the class confidence interval for two classes or class hyper-ellipsoid spaces of
confidence for multi-class cases. That improves class separation and recognition quality in a
large scale.

Let compute difference between classes and determine actual confidence intervals for
both classes and the highest probability of recognition:

nxttxS/ Jn ,or
n, +txS, /\ln =1.67+2.539%0.155/4.47 =1.755
N, —tx8,/\n=212-2.539%0.215/4.47 =1.998

3. Conclusions

As we see even 99% one-sided confidence interval is satisfied and there is an
additional distance indicating that recognition quality actually is 100%. Here we are not
considering such rare cases when the confidence intervals of training sequences are
overlapping or could not provide a high confidence of recognition. It is a subject of other
consideration.
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KJIACCU®UKALIUS CTYYAUHBIX PSAJ0OB HA OCHOBE
BbIBOPOYHOI'O PACHIPEJAEJIEHUS

Ksurtamsumu A.A.
Mexnaynapoanblii UepnoMmopckuit Y HuBepcurer, Tounmmcu

Pesrome

Paccmotpensl cnmyyan Manbix U Oonbmux BeIOOpoK (7 < 30 mim n = 30), mpencTaBieHHBIX B
BUJE PAJOB WM T[OCIEAOBAaTENbHOCTEN cilydalHbIX uucen. llpenmonaraercs, 4ro Kaxkzaas
MOCIEA0BATENBHOCTh HITH BEKTOP Mpeodpa3yeTcs B 0JJHO YKMCIIO — CpeAHEee 3HAaUEHHE COCTABIISIFOIIHX.
3aTeM MNPOUCXOOUT IOCTPOEHHE BHIOOPOYHOTO paclpeeNieHHs STHX COCTABISIONINX, KOTOpOe
OmnpelesieT HMHTEpBAN YBEPEHHOCTH JUIl KIACCOB TOCIENOBAaTEFHOCTEH C COOTBETCTBYIOIICH
TOYHOCTBIO. Eciin MHTEpBabl IEPEKPBIBAIOTCS T.€. OHU HE yJIOBIIETBOPSIOT pa3lielieHHe KJIACCOB, YTO
MPAaKTUYECKH PEIKO MMEET MECTO, TO 3TO SBIAETCS MPEAMETOM OTIEIbHOro oOCyXIeHus. Takue
WHTEPBAJIBI WM 00JaCTU OMPENESISIOTCS ¢ MOMOIIBI0 O0YYArOIIUX MMOCIEI0BATEIBHOCTEN (BHIOOPOK)
Uil AByX M Oonee kimaccoB. [lociie 3Toro onpenensrorcs paccTOsHAS MEKIY LEeHTpaMu (CpeIHUMH)
BBIOOPOYHBIX paclpeAcieHni Al KaxX 101 maphl KIaccoB, YTO M onpeaenseT (GakTHIEeCKyI0 TOUHOCTh
pacro3HaBaHusl TOW MM WHOM MOCIeN0BaTeNbHOCTH. B pesynbTare 5Toro modas HOBas HEM3BECTHAs
MOCJIEIOBATENILHOCTh  (BEKTOP) OyJer KiaccuduimpoBaHa (pacro3HaHa) COOTBETCTBEHHO €€
MOMAJaHUI0 B TO WJIM MHOE TOANPOCTPAHCTBO Kiacca, YTo B OOLIEM cliydae MpeacTaBisieT coOoit

TUIIEPIILIHIIC.
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