АЛГОРИТМЫ АДАПТИВНОЙ РЕГИСТРАЦИИ ИЗМЕРЕННЫХ ДАННЫХ В КОМПЬЮТЕРНЫХ СИСТЕМАХ УПРАВЛЕНИЯ

Мачарадзе Т.Д. Грузинский Технический Университет

Резюме

Рассматриваются алгоритмы адаптивного выбора для регистрации дискретных значений многоканально измеряемых в различных автоматизированных системах параметров, с учетом их спектрального состава. В качестве критерия оптимальности используется минимум суммарной ошибки дискретного представления данных, что позволяет осуществлять регистрацию измеренных данных без потери их информационного содержания. В результате значительно сокращается объем регистрируемой в системе информации. Рассматриваются вычислительные процедуры алгоритмов. Приведены результаты исследования алгоритмов путем цифрового моделирования случайных измеряемых процессов с различными статистическими характеристиками.

Ключевые слова: измеряемые параметры, избыточная информация, спектральный состав, правило регистрации данных, точность дискретного представления.

1. Введение

Эффективная организация ввода (регистрации) измерительной информации различного спектрального состава поступающей со многих каналов и предназначенной для последующей обработки, является общей задачей различных компьютерных систем управления (АСУ ТП, САНЭ). Она состоит в обеспечении системы минимальным объе- мом качественных данных, дающей представление о динамике измеряемых пара- метров. Решение этой задачи сталкивается с такими трудностями, как равномерный опрос каналов, ограниченная пропускная способность системы, необходимость обра-ботки результатов измерения в реальном времени. Первопричиной возникновения этих проблем является наиболее распространенный в системах равномерный ввод, запол- няющий компьютерные базы данных большим объемом не имеющей ценности (избы- точной) информации. Исходя из сказанного актуальной является задача разработки алгоритмов, позволяющих программно контролировать поступающие с различных каналов измеренные данные и через определенные интервалы времени t_і, соответ- ствующему тактовому интервалу опроса системы, регистрировать их с учетом дина- мики каждого измеряемого параметра.

2. Основная часть

Поскольку основной целю измерительного процесса является обеспечение требуемой точности дискретного представления измеренных данных, в качестве критерия оптимальности при разработке алгоритмов регистрации данных принят критерий минимизации сумарной ошибки аппроксимации (дискретизации) всех измеряемых параметров $S_i(t)$.

$$I_{\Sigma} = \min_{\{t_i\}} \left\{ \sum_{j=1}^{m} \varepsilon_{S_j}(t_i) \right\} \quad (i=0,1, \dots n)$$
 (1)

при ограничениях:

$$I_{Sj} = \min_{\{\tau_{ij}\}} \left\{ \varepsilon_{S_j}(\tau_{ji}) \right\}, \quad \Delta t^* = \text{const}, \ \Delta t^* \leq \Delta t_i,$$

где ϵ_{ji} — ошибка аппроксимации $S_j(t)$ измеряемого параметра; I_{SJ} — ошибки аппроксимации параметров; τ_{ji} — требуемая частота дискретизации каждого параметра; t_i — мо- менты времени дискретных измерений; Δt_i — период регистрации (ввода) измеренных данных; Δt^* - тактовый интервал опроса ограниченный пропускной способностью системы; m — число измеряемых параметров (каналов ввода) [1].

Задача определения оптимального порядка регистрации измеряемых параметров в этом случае сводится к определению в моментах ввода $t_1, ...t_n$, управляющих возде- йствий $u^1, ...u^p$ для регистрации дискретного значения одной из измеряемых $S_i(t)$ функ- ций, что достигается

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(2), 2007

путем распределения тактового интервала опроса между измеря- емимы параметрами с учетом их спектральных характеристик в реальном времени.

На основе критерия (1) разработаны алгоритмы регистрации измеренных данных. Результаты исследования показали, что в тех практически важных случаях, когда требуется четкая регистрация пиков измеряемых параметров, выбор для регистрации измеренного значения целесообразно осуществить по правилу, максимизирующему абсолютные значения разностей второго порядка дискретных значений параметров

$$I_{k} = \max_{\{\tau_{ji}\}} \left\{ \sum_{i=1}^{m} \sum_{j=0}^{n} \left(S_{j}(\tau_{j(i-1)}) - 2S_{j}(\tau_{j(i-1)}) + S_{j}(\tau_{(j-2)}) \right\}.$$
 (2)

Когда требуется регистрация усредненных на интервалах ввода измеренных регистрации предлагается осуществить максимизирующему величину квадратов разностей дискретных значений измеряемых параметров

$$I_{L} = \max_{\{\tau_{ji}\}} \left\{ \sum_{j=1}^{m} \sum_{i=0}^{n} \left[\left(S_{j}(\tau_{ji}) - S_{j}(\tau_{j(j-1)}) \right]^{2} \right\}.$$
 (3)

Вычислительные процедуры реализующие алгоритмы (2) и (3) состоят в следующем. Интервал ввода системы Δt_i разбивается на равные подинтервалы $\Delta t_k << \Delta t_i$ (k=0,1,..., p), определенные частотой равномерной дискретизации измеряемых параметров $S_i(\tau_{ii})$. На протяжении каждого интервала Δt_i , в зависимости от используемого алгоритма, для каждого $S_i(t)$ параметра вычисляются и суммируются абсолютные значения разностей второго порядка (для алгоритма (1)) или квадратов разностей измеренных значений (для алгоритма (2)). К моменту времени t_i (конец интервала Δt_i) значения сумм сравниваются и определяется максимальное из них:

$$\max_{\{S_j\}} \left\{ \sum_{k=0}^p \left| \Delta^2 S_j \left(\tau_{jk} \right| \right\} \right\} \tag{4}$$

$$\max_{\{S_j\}} \left\{ \sum_{k=0}^p \left| \overline{\Delta} S_j(\tau_{jk}) \right| \right\}, \tag{5}$$

которое в данный t_i момент синтезирует управляющее воздействие для регистрации дискретного значения соответствующего $S_i(t)$ параметра. При переходе на следующий интервал ввода, значение суммы для выбранного в момент t; параметра обнуляется, сдвигая начало отсчета зарегистрированной в момент t_i функции в последнюю зафиксированную точку. Для остальных параметров процедура суммирования продолжается до тех пор, пока для них не будут выполнены условия (4), (5). Затем аналогичные процедуры повторяются для последующих моментов ввода $t_{i+1}, t_{i+2}, \dots t_n$. Блок схема описанных вычислительных процедур приведена на рис.1.

Для оценки эффективности исследования предложенных алгоритмов была разработана программная модель, имитирующая многоканальный ввод измеряемых параметров с заданными статистическими характеристиками. В частности, в модели реализо- ваны часто встречаемые на практике случайные процессы с корреляционными функци- ями вида

$$R(\tau) = R(0)e^{-\alpha |\tau|}$$

$$R(\tau) = R(0)e^{-\alpha |\tau|} \cos \beta \tau$$
(6)

$$R(\tau) = R(0)e^{-\alpha \tau} \cos \beta \tau$$
 (7)

Значения параметров $\lambda = \alpha |\tau|$ и $\gamma = \beta \tau$, характеризующие моделируемые процессы, выбирались так, чтобы интервалы корреляции у всех процессов были примерно одинаковыми.

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(2), 2007

Следовательно, изменением параметров α и β обеспечивалось моделирование различных по динамике измеряемых параметров.

Для выработкаи дискретных значений моделируемых процессов (6) и (7) использовались соответственно рекурентные алгоритмы [2]

$$x[n] = a_0V[n] + b_1x[n-1]$$
 (8)

$$x[n] = a_0V[n] + a_1V[n-1] + b_1x[n-1] + b_2x[n-2],$$
 (9)

где x[n] дискретные значения моделируемых параметров, коррелированных по заданному закону; V[n] – нормально распределенные случайные числа, a_0 , a_1 , b_1 , b_2 – параметры определяеющие характер корреляции. На рис.2 приведены начальные участки реализации моделируемых случайных процессов для некоторых значений λ и γ длиной в 500 дискрет.

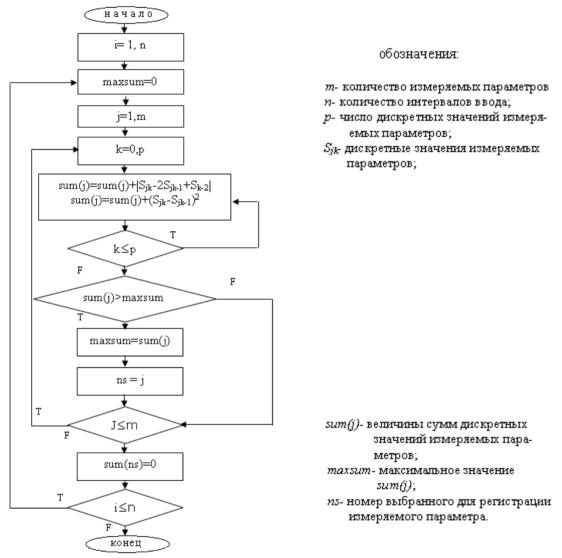
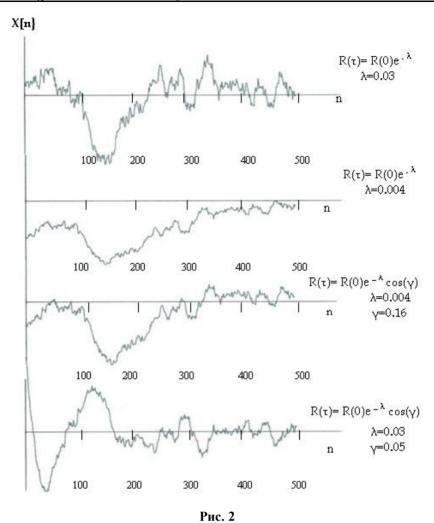



Рис. 1

Моделирование проводилось для различного количества измеряемых параметров, значений интервала опроса Δt^* , разброса спектров параметров из диапазрна $0 \div 15~\Gamma ц$, к которому относятся большинство измеряемых на практике процессов.

Оценки точности дискретных значений измеряемых параметров, полученных в результате моделирования, проводились на основе наиболее распространенных на практике видов аппроксимации- ступенчатой и линейной.

В таблице 1 приведены результаты моделирования оптимального алгоритма (2) для десяти измеряемых параметров с разбросом спектров в 15 раз при тактовом интервале опроса системы $\Delta t^*=060$ с. Требуемые интервалы опроса параметров указывающие на их динамику, соответствуют 5%-ой ошибке ступенчатой аппроксимации. Для сравнения приведены результаты равномерного ввода данных.

Таблица1

			Δt*=0,060 c			
$N_{\overline{0}}$	Интерва-	Порядок адаптивной	Средний	Средне-	Макси-	ошибка
изм.	лы дис-	регистрации измеряемых	интервал	квадрат.	мальныйин	аппрокс.
пар.	кретиза-	параметров	опт. ввода	ошибка	тервал опт.	при равно-
	ции,			аппрокс.	ввода	мерном
	парамет-			при опт.		вводе
	ров (с)			вводе		
1	0,216	1,2,4,8,12,14,17,21,25	0,214	5,0	0,360	8,5
		29,31,35,39,44,47,				
2	0,325	3,7,10,15,20,24,32,36,	0,304	4,9	0,480	7,0
		43,48,				
3	0,430	5,11,16,23,34,40,46	0,383	4,7	0,600	6,0
4	0,720	9,19,30,41,49,60,	0,627	4,7	0,840	4,6
5	0,810	6,18,28,42,55,	0,689	4,7	0,900	4,4
6	1,300	13,39,51,70,	1,108	4,7	1,380	3,5
7	1,625	22,45,62,	1,312	4,5	1,680	3,1
8	2,160	27,56,85,	1,678	4,4	2,040	2,7
9	2,600	37,72,	1,211	4,6	2,520	2,5
10	3,250	38,80,	2,432	4,4	3,000	2,2

Transactions. Georgian Technical University. AUTOMATED CONTROL SYSTEMS - No 1(2), 2007

Прведенные в таблице результаты показывают, что ввод по оптимальному алгоритму значительно эффективнее равномерного ввода. Например, чтобы обеспе- чить требуемую точность дискретного представления для самого динамичного пара- метра с интервалом дискретизации 0,216 с, при вводе десяти параметров следовало бы установливать тактовый интервал опроса равным 0,0216 с. В случае оптимального ввода, требуемая точность дискретного представления обеспечивается при тактовом интервале опроса $\Delta t^*=0,060$ с. Это означает, что примерно в три раза сокращается скорость регистрации информации.

3. Заключение

Разработанные алгоритмы позволяют осуществлять адаптивный ввод и регистрацию дискретных значений измеряемых параметров с учетом их спектрального состава. Алгоритмы реализованы ввиде функциональных программ ввода и регистрации измеренных данных. Практическое использование алгоритмов позволяет значительно сократить объем регистрируемых в различных автоматизированных системах измеренных данных с сохранением их информационной ценности.

4. Литература

- 1. Дубовик Е.А., Мачарадзе Т.Д. Методы дискретного ввода и представления измерительной информации в автоматизированных системах. "Управляющие системы и машины", №4, 1980 г.
 - 2. Быков В.В. Цифровое моделирование в систематической радиотехнике. М., 1981 г.

ALGORITHMS OF ADAPTIVE MEASUREMENT DATA REGISTRATION IN COMPUTERING CONTROL SYSTEMS

Macharadze Tengiz Georgian Technical University

Summary

The paper is concerned with optimal algorithms of measurement data input and computer registration differing their spectral characteristics in multi-channel computering systems. This is significantly decrease processing data capasity.

ᲛᲐᲠᲗᲕᲘᲡ ᲙᲝᲛᲞᲘᲣᲢᲔᲠᲣᲚ ᲡᲘᲡᲢᲔᲛᲔᲑᲨᲘ ᲒᲐᲖᲝᲛᲘᲚᲘ ᲘᲜᲤᲝᲠᲛᲐᲪᲘᲘᲡ ᲐᲓᲐᲞᲢᲣᲠᲘ ᲠᲔᲒᲘᲡᲢᲠᲐᲪᲘᲘᲡ ᲐᲚᲒᲝᲠᲘᲗᲛᲔᲑᲘ

თენგიზ მაჭარაძე საქართველოს ტექნიკური უნივერსიტეტი

რეზიუმე

სტატიაში განხილულია ოპტიმალური ალგორითმები, რომლებიც მრავალარზიან ავტომატიზებულ სისტემებში გასაზომი პარამეტრების უზრუნველყოფს დისკრეტულ მნიშვნელობათა შეტანასა მახასიათებლების რეგისტრაციას მათი სპექტრული და გათვალისწინებით. ეს მნიშვნელოვნად ამცირებს შემდგომი დამუშავებისათვის განკუთვნილი ინფორმაციის მოცულობას.